Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse Registreeri konto

Võrrandisüsteemide koostamine tekstülesannete põhjal I osa (1)

5 VÄGA HEA
Punktid
Vasakule Paremale
Võrrandisüsteemide koostamine tekstülesannete põhjal I osa #1 Võrrandisüsteemide koostamine tekstülesannete põhjal I osa #2 Võrrandisüsteemide koostamine tekstülesannete põhjal I osa #3 Võrrandisüsteemide koostamine tekstülesannete põhjal I osa #4 Võrrandisüsteemide koostamine tekstülesannete põhjal I osa #5 Võrrandisüsteemide koostamine tekstülesannete põhjal I osa #6 Võrrandisüsteemide koostamine tekstülesannete põhjal I osa #7 Võrrandisüsteemide koostamine tekstülesannete põhjal I osa #8 Võrrandisüsteemide koostamine tekstülesannete põhjal I osa #9 Võrrandisüsteemide koostamine tekstülesannete põhjal I osa #10 Võrrandisüsteemide koostamine tekstülesannete põhjal I osa #11 Võrrandisüsteemide koostamine tekstülesannete põhjal I osa #12 Võrrandisüsteemide koostamine tekstülesannete põhjal I osa #13 Võrrandisüsteemide koostamine tekstülesannete põhjal I osa #14 Võrrandisüsteemide koostamine tekstülesannete põhjal I osa #15 Võrrandisüsteemide koostamine tekstülesannete põhjal I osa #16 Võrrandisüsteemide koostamine tekstülesannete põhjal I osa #17 Võrrandisüsteemide koostamine tekstülesannete põhjal I osa #18 Võrrandisüsteemide koostamine tekstülesannete põhjal I osa #19 Võrrandisüsteemide koostamine tekstülesannete põhjal I osa #20 Võrrandisüsteemide koostamine tekstülesannete põhjal I osa #21 Võrrandisüsteemide koostamine tekstülesannete põhjal I osa #22
Punktid 10 punkti Autor soovib selle materjali allalaadimise eest saada 10 punkti.
Leheküljed ~ 22 lehte Lehekülgede arv dokumendis
Aeg2012-10-30 Kuupäev, millal dokument üles laeti
Allalaadimisi 139 laadimist Kokku alla laetud
Kommentaarid 1 arvamus Teiste kasutajate poolt lisatud kommentaarid
Autor T . Õppematerjali autor

Märksõnad

Sarnased õppematerjalid

thumbnail
12
ppt

Võrrandisüsteemide koostamine tekstülesannete põhjal II osa

Võrrandisüsteemide koostamine tekstülesannete põhjal II osa © T. Lepikult, 2003 Kahekohalised arvud Ülesanne 1 Kahekohalise arvu numbrite summa on 12. Selle arvu numbrite ümberpaigutamisel saame arvu, mis on esialgsest 18 võrra väiksem. Leida esialgne arv Lahendus Seda tüüpi ülesannetes tuleb otsitavat arvu vaadelda kujul z = 10x + y , kus x näitab kümneliste arvu ja y üheliste arvu. Tasub tähele panna, et otsitavad x ja y peavad olema täisarvud ning rahuldama võrratusi 0 < x < 10, 0 y < 10. Ülesanne 1 (2) Lahendus jätkub ... Kui ülesannet lahendades peaksime saama otsitavatele niisugused väärtused, mis neid võrratusi ja/või täisarvulisuse nõuet rikuvad, tuleb hakata lahenduskäigust vigu otsima. Kuna ülesande püstituse kohaselt peab otsitava arvu

Matemaatika
thumbnail
18
ppt

Võrrandisüsteemide koostamine tekstülesannete põhjal III osa

Võrrandisüsteemide koostamine tekstülesannete põhjal III osa © T. Lepikult, 2003 Liikumisülesanded, ülesanne 1 Ülesanne 1 Kahe linna vaheline kaugus on 600 km. Üks rong läbib selle vahemaa 2 tunni võrra kiiremini kui teine, sest ta kiirus on 10 km/h võrra suurem kui teise rongi kiirus. Leida, kui kaua aega kulub kummalgi rongil ühest linnast teise sõitmiseks. Lahendus Liikumisega seotud ülesannetes tuleb teada kiiruse v, läbitud teepikkuse s ja liikumiseks kulunud aja t vahelist seost. Kiirus v on defineeritud kui läbitud teepikkuse s ja selleks

Matemaatika
thumbnail
9
ppt

Võrrandisüsteemide koostamine tekstülesannete põhjal IV osa

Võrrandisüsteemide koostamine tekstülesannete põhjal IV osa Liikumisülesannetega sarnased ülesanded © T. Lepikult, 2003 Selgituseks Paljude protsesside puhul saab rääkida nende kulgemise kiirusest: näitajast, mille mõõtühikuks on "kogus ajaühiku kohta". Näiteks vee pumpamisel võime pumba "töövõimet" (ehk võimsust) mõõta ühikutega "kuupmeetrit vett tunnis", brigaadi tööviljakusest rääkides võib kasutada mõistet "vahetusnormi päevas" jne. See asjaolu võimaldab paljude levinud tekstülesannete lahendamisel kasutada analoogiat liikumisülesannetega ning tuntud valemit

Matemaatika
thumbnail
816
pdf

Matemaatika - Õhtuõpik

Matemaatika õhtuõpik 1 2 Matemaatika õhtuõpik 3 Alates 31. märtsist 2014 on raamatu elektrooniline versioon tasuta kättesaadav aadressilt 6htu6pik.ut.ee CC litsentsi alusel (Autorile viitamine + Mitteäriline eesmärk + Jagamine samadel tingimustel 3.0 Eesti litsents (http://creativecommons.org/licenses/by-nc-sa/3.0/ee/). Autoriõigus: Juhan Aru, Kristjan Korjus, Elis Saar ja OÜ Hea Lugu, 2014 Viies, parandatud trükk Toimetaja: Hele Kiisel Illustratsioonid ja graafikud: Elis Saar Korrektor: Maris Makko Kujundaja: Janek Saareoja ISBN 978-9949-489-95-4 (trükis) ISBN 978-9949-489-96-1 (epub) Trükitud trükikojas Print Best 4 Sisukord osa 0 – SISSEJUHATUS . .................... 17 OSA 2 – arvud ..................................... 75 matemaatika meie ümber ................... 20 arvuhulgad

Matemaatika
thumbnail
28
doc

Ruutvõrrandi abil lahenduvaid ülesandeid

Ruutvõrrandi abil lahenduvaid ülesandeid Ülesannete lahendused pärinevad õpikust "Matemaatika IX klassile"(koost. Tõnu Tõnso ,Tln., 1998), lk-74-78 (ül.269-391) ja kogumikust "Matemaatika kirjaliku eksami ülesanded IX klassile"* (koost. Enn Nurk ja Valvo Paat, Tln., 1996). * ülesanded tähistatud E-tähega. Paljude tekstülesannete lahendamisel jõuame ruutvõrrandini, millel on tavaliselt 2 lahendit. Olenevalt ülesande sisust võib aga ülesande vastuseks sobida ainult üks lahend. Tekstülesannete puhul tuleb võrrandi lahendeid kontrollida ülesande teksti, mitte koostatud võrrandi järgi.

Matemaatika
thumbnail
7
doc

Matemaatika valemid kl 10-11 12 tõenäosus

10.klass a1 b1 c1 1. Reaalarvude piirkonnad kui D = 0; D x = 0; D y = 0, siis = = a 2 b2 c 2 2. Astme mõiste üldistamine a m a n = a m +n c)pole lahendeid a1 b1 c a m : a n = a m -n , kui m > n kui D = 0; D x 0; D y 0, siis = 1 a 2 b2 c 2 ( a b) n = a n b n n 12. Ruutvõrrandi süsteemid a an 13. Kolmerealine determinant = n , kui b 0 b b 14

Matemaatika
thumbnail
100
pdf

MATEMAATIKA TÄIENDUSÕPE

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS I OSA SISUKORD 1. ARVUHULGAD …………………………………………………… 2 2. ARITMEETIKA ……………………………………………….…… 3 2.1 Mõningate arvude kõrgemad astmed ………………………….……. 3 2.2 Hariliku murru põhiomadus ………………………………….…….. 3 2.3 Tehetevahelised seosed ……………………………………….…….. 3 2.4 Tehted harilike murdudega ………………………………….……… 4 2.5 Tehete põhiomadused ……………………………………….……… 5 2.6 Näited tehete kohta positiivsete ja negatiivsete arvudega …….…….. 5 2.7 Näited tehete kohta ratsionaalarvudega ………………………

Matemaatika
thumbnail
4
doc

Võrrandite koostamine ja lahendamine

Võrrandid ja võrrandisüsteemid Võrrandite koostamine ja lahendamine 1. Arvu ja tema vastandarvu korrutis on ­9. Leia need arvud. Lahendus: Tähistame otsitava arvu tähega x. Vastandarv on siis ­x ja nende arvude korrutis x . (­x) = ­x2. Saame võrrandi ­ x2 = ­ 9. Selle teisendamisel saame x2 ­ 9 = 0; (x + 3) (x ­ 3) = 0; x + 3 = 0 või x ­ 3 = 0 x = ­ 3 või x = 3. Otsitav arv võib olla 3 või ­3. Kui otsitav arv x = 3, siis ta vastandarv ­ x = ­3. Kui otsitav arv x = ­3, siis ta vastandarv ­ x = ­ (­3) = 3. Vastus: 3 ja ­3 2. Pool otsitava arvu ruudust võrdub 7-ga. Kui suur on otsitav arv? Lahendus: 1 2 Kui otsitava arvu tähistame tähega x, siis pool otsitava arvu ruudust on x .

Matemaatika




Meedia

Kommentaarid (1)

meeri27 profiilipilt
Meeri Kuustemäe: Väga huvitav ja kasulik slaid show. Väga põhjalikult on seletatud ülesande lahenduskäiku.
10:28 27-10-2013





Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun