*Võrdsete alustega astme korrutamisel astendajad liidetakse. am x an = a m+n 2)Võrdsete alustega astme jagamine. *Võrdsete alustega astmete jagamisel astendajad lahutatakse. am : an = a m-n 3) Korrutise astendamine. *Korrutise astendamisel võib astendada iga tegur eraldi ja siis saadud tulemus korrutada. ( a x b )m am x bm 4) Jagatise astendamine. *Jagatise astendamisel võib astendada eraldi jagatava ja jagaja ja seejärel jagada üks tulemus teisega. ( a x b ) m am : bm 5) Astme astendamine, *Astme astendamisel astendajad korrutatakse. ( a m ) n = a mxn 6) Hulkliikme korrutamine üksliikmega. *Hulkliikme korrutamisel üksliikmega tuleb hulkliige iga liige läbi korrutada selle üksliikmega. ( a + b + c ) x d = ad + bd + cd 7) Hulkliikme jagamine üksliikmega. *Hulkliikme jagamisel üksliikmega tuleb hulkliikme iga liige läbi jagada selle üksliikmega. ( a + b + c ) : d = a+b+c = a:d + b:d + c:d...
Reeglid seitsmendale klassile Koostanud : Crazychil Tehted ratsionaalarvudega Ratsionaalarvude hulka kuuluvad positiivsed ja negatiivsed täisarvud ja murdarvud Kahe negatiivse arvu liitmine Arvu absoluutväärtus näitab kui kaugel on deda arvu kujutav punkt arvteljel 0 punktist Kahe erimärgilise arvu liitmine Vastandarvude summa on alati 0 Erumärgiliste arvude summa saamiseks lahutame suuremast absoluutväärtusest võiksema ja märgi võtame samasuguse nagu on suurema absoluutväärtuse ees Ratsionaalarvude lahutamine Lahutamine on vastandarvu liitmine Ratsionaalarvude liitmine lahutamine on vastandarvude liitmine. Posiiivse arvu B vastandarv on -B Negatiivse arvu -B vastandarvuks on positiivne arv B Seega vastandarvu vastandarv on arv ise Negatiivse arvu lahutamise asemel liidame vastandarvu Kahepunkti vaheline kaugus arvteljel Vähendatava ja vähendaja järjestuse muutmisel mmuutub vahemärk vastupidiseks ,ei muutu absoluutväärtus Ratsio...
Arvu 5 ruut on 25, sest 52 = 5 · 5 = 25. Ruutjuur Antud mittenegatiivse arvu a ruutjuureks nimetatakse sellist mitte- negatiivset arvu b, mille ruut võrdub arvuga a. a =b b2 = a ! Negatiivsest arvust ei saa ruutjuurt võtta. Juure korrutis ab= a b Mittenegatiivsete arvude korrutise ruutjuur võrdub tegurite aritmeetilise ruutjuure korrutisega Jagatise ruutjuur a a = b b Positiivsete arvude jagatiste aritmeetiline ruutjuur võrdub nende arvude aritmeetiliste ruutjuurte jagatisega. Ruut võrrand Võrrandit ax²+bx+c=0, milles a, b ja c on antud arvud (a0) ja x on tundmatu, nimetatakse ruutvõrrandiks. ax² + bx + c = 0 a ruutliikme kordaja ax² ruutliige b lineaarliikme kordaja bx lineaarliige c vabaliige Valem. Ruutvõrrandiks nimetatakse võrrandit, mida saab esitada kujul . Seejuures tähistavad a, b ja c reaalarvu...
Maalil ja Juulil on kokku 480 krooni. Kui Maali annaks Juulile 120 krooni, siis jääks talle niisama palju raha, kui oli enne Juulil. Kui palju oli raha Maalil ja Juulil? Lahendus: Olgu Maalil x krooni ja Juulil y krooni. Kokku on neil siis x + y = 480 krooni. Kui Maali annaks Juulile 120 krooni, siis jääb talle x - 120 krooni, mis on niisama suur summa, kui oli enne Juulil x 120 = y. Saame võrrandisüsteemi: Kontroll: Maalil ja juulil on kokku 300 + 180 = 480 krooni. Kui Maali annaks Juulile 120 kooni, siis talle endale jääks 300 120 = 180 krooni, mis on samapalju kui Juulil esialgu. Vastus: Maalil oli 300 krooni ja Juulil 180 krooni. 2. Arvuta kujundi pindala, mida piiravad jooned x = 0; y = -2; y = 5; y = -2x + 10. Lahendus: Leiame joonte lõikepunktid. 1) Joonte x = 0; y = -2 lõikepunkt on A(0;-2). 2) Joonte y = 5 ja y = -2x + 10 lõikepunkt. Koostame võrrandisüsteemi: Joonte y = 5 ja y...
MATEMAATIKA TÖÖPLAAN 4b. klassile II POOLAASTA Aine : Matemaatika Klass: 4 B Õpetaja : Kasutatav õppekirjandus: Matemaatika õpik 4. klassile II osa. K. Kaasik, Avita 2005 Matemaatika töövihik 4. klassile II osa. K. Kaasik, A. Kaasik, Avita 2005 Matemaatika kontrolltööd ja tunnikontrollid 4. klassile. A. Kaasik, Avita 2002 Matemaatika lisaülesanded 4. klassile. K. Laanmäe, Avita 2002 Nüüd on minu kord. E. Pehkonen, L. Pehkonen, Avita 1997 Matemaatikaviktoriinid 1.4. klassile. E. Saidla, Avita 2003 Interaktiivsed töölehed Üldeesmärgid :...
Ülesannete vastused. 1. ülesanne Vastus(ed) : 1: (a-b); 1:5 2. ülesanne Vastus(ed) : 1. 288 2.196 3.Ei 3. ülesanne Vastus(ed) : 1.y = 4:x 3. A(4; 1); B(2; 2) 4. x1 = 4; x2 = 2 4. ülesanne Vastus(ed) : 1. Kolm 2.Saaremaa 3.Tartumaa 5. ülesanne Vastus(ed) : 2. 25 cm; S = 600 cm2 3. OK = 12 cm 6. ülesanne Vastus(ed) : Plaatide hind 0.3 ja pakis on plaate 25 tükki 7.ülesanne Vastus(ed) : 75% või 0,75 või 3:4 ...
docstxt/134884419516.txt...
Matemaatika Matemaatika (kreekakeelsest sõnast mathma 'õpitu, teadus') on teadus, mis uurib mitmesuguseid hulki arvuhulki, punktihulki ehk kujundeid, funktsioonihulki jms. Peatähelepanu ei osutata seejuures hulkade sisulisele tähendusele, vaid nende elementide seostele ja omadustele. Palju matemaatika mõisteid, näiteks arv, geomeetriline kujund ja funktsioon, on tekkinud tegelike hulkade, esemete või seoste kõrvutamisel ja võrdlemisel, kusjuures on jäetud kõrvale kõik need omadused, mis matemaatika seisukohast pole olulised. Näiteks arv 5 pole seoses ühegi tegeliku hulgaga, kuid teda saab seada vastavusse ühe käe sõrmedega, 5 õunaga jne. Kõigil sellistel hulkadel on elementide sisulisest tähendusest olenemata üks ühine omadus -...
(4a-3b)²-3b(3b-7a)= 16a²-24ab+9b²+21ab=16a²-3ab Arvutan avaldise väärtuse kui a=0,5 ja b=-2/3 16*0,5-3*0,5*(-2/3)=5 1)250*74%/100%= 185 (kr) 2) 50:250=0,2 0,2*100%=20% 3) 250-185-50=15(kr) 4)15:250=0,6 0,6*100%=6% Olgu üks arv x ja teine x-9, nende arvude korrutis on 532, Saan võrrandi x(x-9)=532 x(x-9)-532=0 x²-9x-532=0 kasutan lahendi valemit Leian teis arvu 28-9=19 Kontroll: üks arv on 28 ja teine 19 nende arvude korrutis On 532. 1.Leian seina pindala S=ab S=3,6*2,4=8,64 (m²) 2. Leian ristküliku kujulise plaadi pindala S=ab S=20*30=600 (cm²)=0,06 (m²) 3. Leian mitu ristküliku kujulist plaati mahub seinale, kui vahesid ei jääta 8,64:0,06=144 (plaati) 4. 90% ON 144 144*100%/90%=160 (plaati) 1. MNK ja LMK on täisnurksed 2. Arvutan külje LM ligikaudse pikkuse Kasutades Pythagorase teoreemi ...
Definitsioon. Milline peab olema definitsioon? Lühike, tabav ja täpne. Adekvaatne ning ei tohi defineeritavaga sõnaliselt kattuda. Milline peab olema algmõiste? Ei vaja selgitust, on sobiv klassifitseerimiseks. Mis on aksioom? Väide, mille tõesuses pole kahtlust. Teoreem-lause, mille õigsus tõestatakse faktidele tuginedes arutluse kaudu. Millest koosneb teoreem? Eeldus ja väide Nurk-geomeetriline kujund, mille moodustavad 2 ühest ja samast punktist väljuvat kiirt. Sirgnurk-nurk, mille haarad moodustavad sirgjoone Kõrvunurgad-2 nurka, millel 1 haar on ühine ja mille teised haarad moodustavad sirge Tippnurgad-ühe nurga haarad on teise nurga haarade pikendused üle nende ühise tipu Täisnurk-nurk, mis on 90 kraadi Nürinurk-nurk, mis on suurem kui 90 kraadi, kuid väiksem kui 180 kraadi Teravnurk-nurk, mis on väiksem kui 90 kraadi Tipunurk-võrdhaarse kolmnurga haarade vaheline nurk Harilik murd-näitab, mitmeks võrdseks...
2x = 4 x = 2 Ladendiks on arvupaar (2; -1) 25. 26. Lõike on 10 ja kiiri on 10 27. 18 kolnurka 28. 1) 1 + 2 + 34 + 56 + 7 = 100 2) 888 + 88 + 8 + 8 + 8 = 1000 29. 19+9+0=19+9·1 1 + 9 9 + 2 = 1 · (9 9) + 3 19+ 89=98+ 9+1 1+997=1· 998 3+5-7+9=2· 4+8-6 30. 1) (20 + 80) · (2 + 6 : 3) = 400 2) 4 · (12 + 18 : 3 + 6) = 96 Kasutatud kirjandus 1. Nuputa I raamat Evi Mitt 2. Nuputa II raamat Evi Mitt 3. Matemaatika põhikooli õpilasele- Aavo Lind 4. Matemaatika käsiraamat IV-VII klassile- Aavo Lind, Peeter Kasema 5. Mina ise...
Näide:11²=121 , 12²=144,1 3²=169 1³=1 2³=8 3³=27 4³=64 5³=125 6³=216 7³=343 10³=1000 20=1 21=2 22=24 23=8 24=16 25=32 26=64 27=128 28=256 29=512 210=1024 Tehted astmetega 1) am an = a m + n Näiteks: 2² 2³ = 22+3 = 25 = 32 Võrdsete alustega astmete korrutamisel võime astendajad liita ning saadud tulemusega astendada antud alust. 2) am : an = a m-n Näiteks: 36 : 34 = 36-4 = 3² = 9 Võrdsete alustega astmete jagamisel võime jagatava astendajast lahutada jagatava astendaja ning saadud tulemusega astendada alust. 3) (a b)n = an bn Näiteks: (2 4)² = 2² 4...
Valemid a1 = a (ab)n = an bn a0 = 1 a n =an (an)m = anm an . am = an+m a-n = an an an-m am 1) ax2+bx=0 = x(ax+b) = x1=0 ja x2= -b Taandamata Ruutvõrrand 2) ax +bx+c=0 = x1,2= -b + b2-4ac = a(x-x1)(x-x2) 2 Taandatud Ruutvõrrand 3) x +px+q = x1,2= -p + p2-q = (x-x1)(x-x2) 2 Viete i teoreem x1+x2=-p X1 . x2= q Tegurdamine 2 2 (a+b)(a-b) = a -b 2 Ax +bx = x(ax+b) (a+b)2 = (a+b) . (a+b) = a2+2ab+b2 Ax2+bx+c = a(x-x1)(x-x2) (a-b)2 = (a-b) . (a-b) = a2-2ab+b2 A3+b3 = (a+b)...
Nimi.................................. PÕHIKOOLI MATEMAATIKA LÕPUEKSAMI ÜLESANDED 2011 VARIANT A Ülesanded 1, 2, 3, 4 ja 5 on kohustuslikud ja valikülesannete (6, 7) hulgast tuleb lahendada omal valikul veel üks ülesanne. Maksimaalselt on võimalik saada kuue ülesande lahendamise eest 50 punkti. Lahendamiseks on aega 180 minutit. Vajadusel täienda jooniseid ning lahendusi tuleb selgitada. Hindamine: 45 50 punkti, hinne``5``; 35 44 punkti, hinne ``4``;...
Ruutfunktsioon Across 4. Ruutfunktsiooni graafikuks on joon, mida nimetatakse Parabooliks 6. c on ? Vabaliige 7. bx on Lineaarliige 8. Sümmeetriatelje ja parabooli ühist punkti nimetatakse Haripunktiks Down 1. funktsiooni, mis on esitatud ruutavaldisega nimetatakse Ruutfunktsiooniks 1. Parabool avaneb üles, kui kordaja a on Positiivne 2. Punkte x-teljel, kus parabool lõikab või puudutab x-telge nimetatakse nullkohtadeks 3. Parabool avaneb alla, kui kordaja a on Negatiivne MARI LIIS LEPPOJA ...
kl. 23.09.05 NIMI:............................................ Koostas R. Haugas 2. rühm HINDAMINE: "5" 31 28 p. "4" 27 22 p " 3" 21 16 p 1. Kirjuta arvud numbritega. (4 punkti) "2" 15 9 p Kolm tuhat viissada kuuskümmend kolm ........................ Kaheksatuhat üheksa .......................... Kolm tuhat nelisada...
· Alamhulk- Matemaatikas nimetatakse hulka A hulga B alamhulgaks ehk osahulgaks ehk alamsüsteemiks, kui kõik hulga A elemendid on ühtlasi hulga B elemendid. Seda asjaolu tähistatakse A B või A B. Alamhulgaks olemist nimetatakse sisalduvuseks ja asjaolu A B kohta öeldakse ka, et hulk A sisaldub hulgas B. Hulkade vahelist binaarset seost nimetatakse seetõttu sisalduvusseoseks. · Harmooniline võnkumine- Harmooniliseks võnkumiseks ehk siinusvõnkumiseks nimetatakse mis tahes võnkumist, mida saab kirjeldada siinusfunktsiooni või koosinusfunktsiooni abil ja sellise võnkumise võrrandit nimetatakse harmoonilise võnkumise võrrandiks: x = A sin · Lõik- Lõik ehk sirglõik on sirge kaht punkti A ja B ühendav osa, punktid A ja B kaasa arvatud....
(7 p.) Lihtsustage avaldis (3m n)(3m + n) (2n + 3m)2 12mn ja arvutage selle täpne väärtus, kui m = 2 ja n = 13-. 2. (7 p.) Võrdkülgse kolmnurga kujulise maatüki külje pikkus on 215 m. Kui palju saab sellelt maatükilt otra (tonnides), kui keskmine saak ühelt hektarilt on 35 tsentnerit. Vastus andke kümnendiku täpsusega. 3. (7 p.) Lahendage võrrand 3x2 + 4x = 7 ja kontrollige selle lahendeid. 4. (7 p.) Juku brutopalk oli aasta alguses 12500 krooni ja seda tõsteti 1. märtsil 7,5% ning palka tõsteti ka 1. aprillil, seekord 2,5% võrra. Kui suur on nüüd Juku brutopalk ja kui mitme protsendi võrra on viimane palk suurem aasta alguses saadud palgast? 5. (8 p). Täisnurkse trapetsi alused on 10 cm ja 6 cm ning lühem haar 5 cm. Leidke trapetsi pindala ruutdetsimeetrites (kümnendiku täpsusega). Kui palju tuleb kumbagi haara pikendada, et need lõikuksid? 6. (8 p) Ottomari hinded on 2, 4, 3, 1, 2, 4, 3...
(7 p.) Lihtsustage avaldis (3a + b)(3a b) (2b + 3a) 12ab ja arvutage selle täpne väärtus, kui a = 3 ja b = 13-. 2. (7 p.) Võrdkülgse kolmnurga kujulise maatüki külje pikkus on 315 m. Kui palju saab sellelt maatükilt nisu (tonnides), kui saak ühelt hektarilt on 32 tsentnerit. Vastus andke kümnendiku täpsusega. 2 3. (7 p.) Lahendage võrrand 2x + 3x = 5 ja kontrollige selle lahendeid. 4. (7 p.) Aadu brutopalk oli aasta alguses 13500 krooni ja seda tõsteti 1. märtsil 6,5% ning palka tõsteti ka 1. aprillil, seekord 3,5% võrra. Kui suur on nüüd Aadu brutopalk ja kui mitme protsendi võrra on viimane palk suurem aasta alguses saadud palgast? 5. (8 p). Võrdhaarse trapetsi alused on 10 cm ja 4 cm ning kõrgus 4 cm. Leidke trapetsi pindala ruutdetsimeetrites (kümnendiku täpsusega). Kui palju tuleb kumbagi haara...
paralleelseteks kui neil ei ole ühiseid punkte ¤Kaasnurgad- Kahte nurka mis asuvad ühel pool lõikajat ja mille haarad lõikajal suunduvad ühtepidi nim. kaasnurkadeks. ¤Lähisnurgad- Kahte nurka, mis asuvad ühel pool lõikajat ja mille haarad lõikajal suunduvad vastamisi nim. lähisnurkadeks. ¤Põiknurgad- Kahte nurka, mis asuvad üks ühel ja teine teisel pool lõikajat ja mille haarad lõikajal suunduvad vastamisi nim. põiknurkadeks. ¤Kolmnurga välisnurk- kolmnurga välisnurgaks nim. kolmnurga sisenurga kõrvunurka. ¤Kolmnurga välisnurga teoreem- kolmnurga iga välisnurk on võrdne temaga mitte kõrvu olevate sisenurkade summaga. ¤Kolmnurga kesklõik- Lõiku, mis ühendab kahe külje keskpunkte, nim. selle kolmnurga kesklõiguks. ¤Kolmnurga kesklõigu teoreem- Kolmnurga kesklõik on paralleelne kolmnurga ühe küljega ja võrdub poolega sellest küljest. ¤Trapetsi kesklõik- Leitud haarade keskpunktid ja n...