Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse Registreeri konto

Kahe tundmatuga lineaarvõrrandisüsteemi lahendamine erinevate viisidega (0)

1 Hindamata
Punktid
Vasakule Paremale
Kahe tundmatuga lineaarvõrrandisüsteemi lahendamine erinevate viisidega #1 Kahe tundmatuga lineaarvõrrandisüsteemi lahendamine erinevate viisidega #2 Kahe tundmatuga lineaarvõrrandisüsteemi lahendamine erinevate viisidega #3 Kahe tundmatuga lineaarvõrrandisüsteemi lahendamine erinevate viisidega #4 Kahe tundmatuga lineaarvõrrandisüsteemi lahendamine erinevate viisidega #5 Kahe tundmatuga lineaarvõrrandisüsteemi lahendamine erinevate viisidega #6 Kahe tundmatuga lineaarvõrrandisüsteemi lahendamine erinevate viisidega #7 Kahe tundmatuga lineaarvõrrandisüsteemi lahendamine erinevate viisidega #8 Kahe tundmatuga lineaarvõrrandisüsteemi lahendamine erinevate viisidega #9 Kahe tundmatuga lineaarvõrrandisüsteemi lahendamine erinevate viisidega #10 Kahe tundmatuga lineaarvõrrandisüsteemi lahendamine erinevate viisidega #11 Kahe tundmatuga lineaarvõrrandisüsteemi lahendamine erinevate viisidega #12
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 12 lehte Lehekülgede arv dokumendis
Aeg2013-12-04 Kuupäev, millal dokument üles laeti
Allalaadimisi 66 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor kommit2di Õppematerjali autor

Märksõnad

Sarnased õppematerjalid

thumbnail
1
odt

Kahe tundmatuga lineaarvõrrandisüsteemi lahendamine liitmisvõttega

Kahe tundmatuga lineaarvõrrandisüsteemi lahendamine LIITMISVÕTTEGA Liitmisvõtte idee seisneb ühe muutuja kõrvaldamises ehk elimineerimises võrrandite liitmise või lahutamise kaudu ning tulemuseks saame ühe muutujaga võrrandi. Sealt on juba lihtne vastav muutuja väärtus leida. Teise muutuja väärtuse saame, kui asendame leitud muutuja väärtuse ühte esialgsetest võrranditest. x+2y=11 *(5) 5x3y=3 1.) Viin võrrandi normaalkujule. 5x10y=55 2.) Liidan võrrandid. 5x3y=3 3.) Lahendan saadud võrrandid. 13y=52 :(13) 4.) Arvutan teise tundmatu väärtuse. Y=4 5.) Teen kontrolli. x=114*2 6.) Kirjutan vastuse

Matemaatika
thumbnail
2
odt

Kahe tundmatuga lineaarvõrrandisüsteemi lahendamine asendusvõttega

Kahe tundmatuga lineaarvõrrandisüsteemi lahendamine ASENDUSVÕTTEGA Asendusvõtte idee seisneb ühest võrrandist ühe muutuja avaldamises ja selle asendamises teise võrrandisse. Selle tulemusena saadakse ühe tundmatuga võrrand, mida me oskame juba lahendada. Kui üks tundmatu on leitud, on lihtne leida ka teine, sest see on avaldatud eelneva kaudu. Asendusvõtte puuduseks on asjaolu, et ühe tundmatu avaldamine ei pruugi alati lihtne olla, võivad tekkida murdarvud. 2x+y=3 5x3y=8 Kunagi ei tohi samasse avaldisse asendada! 1.) Avaldan esimesest võrrandist muutuja y. y=32x 2.) Asendan teises võrrandis muutuja y saadud avaldisega.

Matemaatika
thumbnail
5
doc

Crameri teoreem lineaarsete võrrandisüsteemide lahendamiseks

Crameri teoreem lineaarsete võrrandisüsteemide lahendamiseks See teoreem kehtib meelevaldsete lineaarsete võrrandisüsteemide lahendamiseks, kus võrrandite ja tundmatute arvud on võrdsed. Lisaks peavad võrrandisüsteemid olema korrastatud. Kui lineaarse võrrandisüsteemi maatriksi determinant on nullist erinev, siis avalduvad tundmatud murdudena, mille nimetajaks on süsteemi maatriksi determinant ja mille lugejad on maatriksi, mis saadakse süsteemi maatriksist vastava tunmatu kordajate veeru asendamisel vabaliikmete veeruga, determinandid. Kui maatriks täidab Crameri teoreemi eeldusi, siis öeldakse, et tegemist on Crameri peajuhtumiga. Seega Crameri peajuhtumil 1) m=n, 2) |A| 0.

Lineaaralgebra
thumbnail
85
pdf

Konspekt

Mainori Kõrgkool Matemaatika ja statistika Loengukonspekt Silver Toompalu, MSc 2008/2009 1 Matemaatika ja statistika 2008/2009 Sisukord 1 Mudelid majanduses ............................................................................................................. 4 1.1 Mudeli mõiste ......................................................................................................................... 4 1.2 Matemaatilise mudeli struktuur ja sisu ................................................................................... 4 2 Funktsioonid ja nende algebra..................................................................

Matemaatika ja statistika
thumbnail
12
pdf

Matemaatika eksami teooria 10. klass

Matemaatika eksami teooria Reaalarvud 1.1. Naturaal-, täis- ja ratsionaalarvud · Naturaalarvude hulk N (ainult positiivsed täisarvud) · Naturaalarvu n vastandarv -n defineeritakse selliselt, et n+(-n)=0 · Naturaalarvud koos oma vastandarvudega moodustavad täisarvude hulga Z (jaguneb pos ja neg) · Iga kahe täisarvu vahe on alati täisarv · Kui arv a ei jagu arv b-ga, siis on tegemist murdarvuga. Kõik täisarvud ja positiivsed ning negatiivsed murdarvud moodustavad kokku ratsionaalarvude hulga Q. Ratsionaalarv on arv, mis avaldub jagatisena a/b, kus a Z, b Z ja b 0. · Iga ratsionaalarv avaldub lõpmatu perioodilise kümnendmurruna. 1.2 Irratsionaal- ja reaalarvud · Arv, mis avaldub lõpmatu mitteperioodilise kümnendmurruna, on irratsionaalarv.

Matemaatika
thumbnail
40
doc

Keskkooli matemaatika raudvara

KESKKOOLI MATEMAATIKA RAUDVARA 1. osa Andres Haavasalu dikteeritud konspekti järgi koostanud Viljar Veidenberg. 2003. aasta 1 Sisukord Sisukord........................................................................................................................................2 Arvuhulgad............................................................................................................................... 5 Naturaalarvude hulk N..........................................................................................................5 Negatiivsete täisarvude hulk z ­...........................................................................................5 Täisarvude hulk Z....................................................................

Matemaatika
thumbnail
156
pdf

Kõrgem matemaatika

MTMM.00.340 Kõrgem matemaatika 1 2016 KÄRBITUD loengukonspekt Marek Kolk ii Sisukord 0 Tähistused. Reaalarvud 1 0.1 Tähistused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0.2 Kreeka tähestik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0.3 Reaalarvud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0.4 Summa sümbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1 Maatriksid ja determinandid 7 1.1 Maatriksi mõiste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Tehted maatriksitega . . . . . . . . . . . . . . . . . . . .

Kõrgem matemaatika
thumbnail
12
pdf

8. klassi raudvara: PTK 4

4.ptk Kahe tundmatuga lineaarvõrrandisüsteem 8.klass Õpitulemused Näited 1.Kahe tundmatuga lineaarvõrrand - Ül.908 normaalkuju ax+by=c, esimese tundmatuga lineaarliige ax, teise teise | 12 tundmatuga lineaarliige by ja vabaliige c; tähed a,b ja c tähistavad arve, need on laiendajad on 12;4;2;3 võrrandi kordajad; kahe tundmatuga võrrandil on samad põhiomadused, mis 48x-4(2x-5)=2(y+2)-3(2x-3y) ühe tundmatuga võrrandil 48x-8x+20=2y+4-6x+9y 48x-8x-2y+6x-9y=4-20 NB kaks kahe tundmatuga lineaarvõrrandit 46x-11y=-16 normaalkuju moodustavad lineaarvõrrandisüsteemi 2.Kahe tundmatuga lineaarvõrrandi Ül.901 normaaalkuju - võrrand üldkujul ax+by=c 3x-5(3y-4)=-3(x-2)+6 kirjutatakse nii, et lineaarliikmed on 3x-15y+20=-3x+6+6

Matemaatika



Lisainfo

Käsitletud on 3 lahendusviisi: graafilist lahendamist, liitmisvõttega lahendamist ning asendusvõttega lahendamist.

Meedia

Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun