Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Kollokvium II (0)

5 VÄGA HEA
Punktid
Vasakule Paremale
Kollokvium II #1 Kollokvium II #2 Kollokvium II #3 Kollokvium II #4 Kollokvium II #5 Kollokvium II #6 Kollokvium II #7 Kollokvium II #8 Kollokvium II #9 Kollokvium II #10 Kollokvium II #11
Punktid 10 punkti Autor soovib selle materjali allalaadimise eest saada 10 punkti.
Leheküljed ~ 11 lehte Lehekülgede arv dokumendis
Aeg2013-03-05 Kuupäev, millal dokument üles laeti
Allalaadimisi 195 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor interpreter Õppematerjali autor
Kogu materjal teise kollokviumi kirjutamiseks.

Sarnased õppematerjalid

thumbnail
6
doc

Matemaatiline analüüs I, 2. kollokviumi spikker

1. Tuletise lineaarsuse tõestus, st näidata, et saame konstandi tuletise märgi alt välja tuua ning summa tuletis on tuletiste summa. Lause: Kui funktsioonid f(x) ja g(x) on diferentseeruvad punktis x ja cR on konstant, siis selles punktis on diferentseeruv ka funktsioon cf(x) Tõestus:Korrutise tuletisest y’=f’(x)g(x)+f(x)g’(x) lähtuvalt, kui cR on konstant, siis y=c*f(x) tuletis on Tõepoolest, valem kehtib juhul n=1. y’=f(x)*c’+f ’(x)*c=0*f(x)+c*f ’(x)=c*f ’(x) Nüüd tuleb näidata induktsioonisamm: eeldame, et valem kehtib juhul n-1 ja näitame, et sel juhul kehtib ta Lause: Kui funktsioonid f(x) ja g(x) on diferentseeruvad punktis x ja cR on konstant, siis selles punktis on ka n korral. Seega kehtib: diferentseeruv ka funktsioon y=f(x)+g(x) Tõestus: y=f(x)+g(x) esmalt, toimides sammhaaval, tehes eraldi tehetena komponendid,saame

Matemaatiline analüüs 1
thumbnail
4
pdf

Matemaatilise analüüsi kollokvium II spikker(2LK)

1). (Tuletise lineaarsuse tõestus, st näidata, et saame konstandi tuletise märgi alt välja tuua ning Definitsioon: Funktsiooni y = f (x) nimetatakse rangelt kasvavaks punktis x, kui leidub selline summa tuletis on tuletiste summa). Lause: Kui funktsioonid f(x) ja g(x) on diferentseeruvad positiivne arv δ, et suvaliste x1 ϵ (x - δ; x) ja x2 ϵ (x; x + δ) korral f (x1) < f (x) < f (x2). punktis x ja cR on konstant, siis selles punktis on diferentseeruv ka funktsioon cf(x) Lause: Kui funktsioon y = f (x) on rangelt kasvav punktis x, siis leidub selline δ > 0, Tõestus:Korrutise tuletisest y’=f’(x)g(x)+f(x)g’(x) lähtuvalt, kui cR on konstant, siis y=c*f(x) tuletis on y’=f(x)*c’+f ’(x)*c=0*f(x)+c*f ’(x)=c*f ’(x) Lause: Kui funktsio

Matemaatiline analüüs i
thumbnail
2
odt

Matemaatiline analüüs I, II kollokviumi spikker

1. Funktsiooni diferentseeruvuse geomeetriline tõlgendus. 11. Kumerus, nõgusus, käänupunktid. Seos teist järku tuletisega. Funktsiooni diferentsiaal on kõverjoonele y = f(x) tõmmatud puutuja ordinaadi muut, mis vastab Oeldakse, et funktsiooni f(x) graafik on kumer punktis a (tapsemini punktis (a, f(a))), kui leidub punkti a argumendi numbrile x=dx. selline -umbrus, et funktsiooni f(x) graafik on argumendi x väärtustel ümbrusest (a - , a + ) allpool 2. Funktsiooni kõrgemat järku tuletised. (tapsemini, mitte ulalpool) puutujat, mis on tõmmatud punktis (a, f(a)) funktsiooni graafikule. Oeldakse, et funktsiooni f(x) graafik on kumer hulgal X, kui sellefunktsiooni graafik

Matemaatiline analüüs
thumbnail
20
docx

Matemaatiline analüüs II kontrolltöö

Matemaatiline analüüs II kontrolltöö Punktid 23-45 23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile?(Tõestada) Loetleda diferentsiaali omadused. a. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana b. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile?(Tõestada) c. Loetleda diferentsiaali omadused c.1. c.2. c.3. c.4. c.5. 24. Funktsiooni lokaalsete ekstreemumite definitsioonid.Sõnastada ja tõestada Fermat' lemma. a. Funktsiooni lokaalsete ekstreemumite definitsioonid a.1. Öeldakse, et funktsioonil f on punktis x lokaalne miinimum, kui a.1.1. Funktsioon

Matemaatiline analüüs
thumbnail
18
docx

Matemaatiline analüüs KT2 vastused

23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. Funktsiooni muudu peaosa ja jääkliige. Olgu antud funktsioon, mis on diferentseeruv punktis a. Eeldame, et f(a)0 kasutades mõisteid: x = x - a - argumendi muut kohal a y = f(x) - f(a) - funktsiooni muut kohal a . Näitasime, et Seega kui tähistame ja f'(a) vahe järgmiselt : Kehtib võrdus Püüame avaldada funktsiooni muutu y argumendi muudu x kaudu. Selleks avaldame kõigepealt võrdusest suhte ja korrutame saadud avaldise x-ga. Saame valemi Valemist näeme, et funktsiooni muut y koosneb kahest liidetavast, millest esimene on diferentsiaal dy = f(a)x ja teine on . Mõlemad liidetavad on lõpmatult kahanevad protsessis x 0. Võrdleme neid suurusi x suhtes. Esiteks, eelduse f(a) 0 põhjal saame : Teiseks kehtib valem : Näeme, et esimene liid

Matemaatiline analüüs i
thumbnail
15
docx

Matemaatika analüüsi II Kontrolltöö

Matemaatilise analüüsi II Kontrolltöö 1. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. a. Teades, et ­argumendi muut kohal a -funktsiooni muut kohal a a.i. Nii me näitasime, et a.ii. Tähistades ja vahe järgmiselt a.iii. Kehtib võrratus: a.iv. Et avaldada väärtust kaudu peame kõigepealt avaldama suhte: a.v. Korrutades saadud avaldist saame: kus a.vi. Nüüd näemegi, et koosneb kahest liidetavast, esimeseks dy= ja teine on , mis kahanevad piirprotsessis a.vii. Võrdleme neid suuruseid suhtes: a.viii. Lisaks kehtib veel: a.ix. Nüüd teame,et diferentsiaal dy on sama järku kahanev suurus ja kõrgemat

Matemaatiline analüüs 2
thumbnail
3
docx

Matemaatiline analüüs 1

23Funktsiooni muudu peaosa ja jääkliige. Olgu antud funktsioon, mis on diferentseeruv punktis a. Eeldame, et f(a)0 26l'Hospitali reegli põhjal saab 0/0 tüüpi määramatusega piirväärtuse arvutamisel üle minna piirväärtusele, mille all kasutades mõisteid: esineb esialgse murru lugeja tuletise ja nimetaja tuletise jagatis. x = x - a - argumendi muut kohal a Tuletamine. Arvutame lim(x0)?sinx/x?. Elementaarfunktsioon sinx/x ei ole x = 0 korral määratud (tekib määramatus y = f(x) - f(a) - funktsiooni muut kohal a . 0/0). Piirväärtuse arvutamisel kasutame l'Hospitali reeglit: Näitasime, et

Matemaatiline analüüs 1
thumbnail
3
docx

Kollokvium III 1.17-1.23 kõik

1.17. L'Hospitali reegel Reegel, abistamaks piirväärtuse leidmist. Lause 1. Kui ja eksisteerib ning , siiseksisteerib ka , kusjuures , st . Analoogiline v'ide peab paika ka vasakpoole piirväärtuse ja ka kahepoolse piirväärtuse korral. Tõestus. Eelduses, et eksisteerib sisaldub vaikimisi, et Olgu suurus selline, et . Vaatleme abifunktsioone: ja . Ning nendest järeldub, et , kusjuures . Et , siis funktsioonid F(x) ja G(x) rahuldavad Cauchy teoreemi eeldusi ning kehtib väide: . Vasakpoolse piirväärtusega analoogselt: (kirjutan ümber sama aint a-) Niiet kui on täidetud see sama tingimuste kompott ja kehtivad sellised piirväärtused ja eksisteerib , siis kehtib võrdus . N. N. 1.18.Taylori polünoom. Olgu y=Pn(x) n-järku vektorruum, kus baasiks on {1, x-a, (x-a)2,...,(x-a)n} . Leian kordajad Ck: Pn(a)=C0 . Diferentseerides mõlemaid pooli, saame, et . Analoogilist mõttekäiku jätkates jõuame tulemuseni: N. P2(x)=x2+x-7 [P2(x)=5+7/1!(x-3)+2/2!(x-3)2] 1.19. Taylori valem. K

Matemaatiline analüüs




Meedia

Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun