Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Kolmas kollokvium (0)

1 Hindamata
Punktid

Lõik failist

Teooria 3 
1. Riemanni  summa. Määratud integraali (Riemanni mõttes) definitsioon.  
 
Riemanni summa lõigul [a,b]      (f) = ∑
  
   
        . 
 
Kui eksisteerib  piirväärtus     
   
    =         ∑
       
   
 , mis ei sõltu 
         
 
         
 
[a,b] osalõikudeks jaotamise viisist ega punktide    valikust, siis öeldakse, et funktsioon f(x) on 
integreeruv (Riemanni mõttes) lõigul [a,b] ning seda piirväärtust nimetatakse funktsiooni f(x) 
 
määratud  integraaliks  ehk Riemanni integraaliks lõigul [a,b] ja seda tähistatakse ∫       
 

2. Darboux ülem-ja alamsummad. Riemanni summa ja Darboux’ summade 
seos. 
 

Olgu funktsioon f tõkestatud lõigul [a,b]. Siis tükelduse   igal osalõigul [       ] leiduvad 

Vasakule Paremale
Kolmas kollokvium #1 Kolmas kollokvium #2 Kolmas kollokvium #3 Kolmas kollokvium #4 Kolmas kollokvium #5 Kolmas kollokvium #6 Kolmas kollokvium #7 Kolmas kollokvium #8 Kolmas kollokvium #9 Kolmas kollokvium #10 Kolmas kollokvium #11 Kolmas kollokvium #12 Kolmas kollokvium #13 Kolmas kollokvium #14
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 14 lehte Lehekülgede arv dokumendis
Aeg2014-12-14 Kuupäev, millal dokument üles laeti
Allalaadimisi 24 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor 213757 Õppematerjali autor
Matemaatilise analüüsi kolmas kollokvium.

Sarnased õppematerjalid

thumbnail
2
pdf

Matemaailine analüüs I kollokvium III spikker

1). (Algfunktsiooni definitsioon. Määramata integraali definitsioon. Määramata 7).(Lihtsamate osamurdude integreerimine. Valemite tuletamine). 12. (Näidata, et kui funktsioonid f (x) = g(x) välja arvatud lõplikus arvus punktides, siis integraal kui tuletise ja diferentsiaali pöördoperaator). Tõestame selle järelduse juhul, kui g(x) f(x) vaid punktis x=c [, ]. () Funktsiooni f algfunktsiooniks nimetatakse funktsiooni F, mis rahuldab tingimust [, ] selle lõigu tükeldus, kusjuures [-1 , ]. Kuna g(x) = O(1) (x[a,b]) F'(x) = (x)= f(x). Definitsioon (määramata integraal) Avaldist kujul F(x) + C; kus

Matemaatika analüüs i
thumbnail
14
doc

Kollokvium III

1. Algfunktsiooni definitsioon. Määramata integraali definitsioon. Määramata integraal kui tuletise ja diferentsiaali pöördoperaator. Funktsiooni f algfunktsiooniks nimetatakse funktsiooni F, mis rahuldab tingimust F'(x) = (x)= f(x). Definitsioon (määramata integraal) Avaldist kujul F(x) + C; kus F(x) on funktsiooni f (x) mingi algfunktsioon ja C on suvaline konstant (integreerimiskonstant), nimetatakse funktsiooni f (x) määramata integraaliks ja tähistatakse st . Määramata integraali tuletis on võrdne integreeritava funktsiooniga st ( )'= f(x). Tõestus: ( )'= (F(x)+C)'=F'(x)= f(x). d( )= ( )'dx = f(x)dx = F'(x)dx= dF(x). Operaatorit L:V->W nimetame lineaarseks kui on täidetud tingimused: a)L(f+g)= L(f) + L(g) kui f, g V (aditiivsus) b) L(cf) = cL(f) kui f V ja c R (homogeensus). Määramata integraal on lineaarne operaator, st =

Matemaatiline analüüs
thumbnail
12
docx

Matemaatiline analüüs I 3. kollokviumi spikker

Küsimused: 1.Määratud integraali (Riemanni mõttes) definitsioon. Darbouc ülem- ja alamsummad. Riemanni summa ja Darboux’ summade seos-viimane pilt. ∫ f ( x ) dx st ∫ f ( x ) dx=F ( x ) +C . Määramata integraali tuletis on f (¿ ξi) ∆ xi SΠn n võrdne integreeritava funktsiooniga st ( ∫ f ( x ) dx )’= f(x). Tõestus: ( ∫ f ( x ) dx Riemanni summa lõigul [a,b] (f) = ∑¿ .

Matemaatiline analüüs 1
thumbnail
4
pdf

Matemaatilise analüüsi kollokvium III spikker(2LK)

3).(Ositi integreerimine määramata integraalis. Valemi tuletamine.) Lebesgue’i teoreem Funktsioon f on lõigul [a;b] Riemanni mõttes integreeruv parajasti siis, Määratud integraali rakendused. kui ta on tõkestatud lõigul [a;b] ja pidev peaaegu kõikjal st katkev hulgal, mille Lebesgue mõõt on null. Hulga D c R Lebesgue mõõt on null siis, kui iga ε>0 korral saame leida hulka D katva vahemike süsteemi, mille pikkuste summa on väiksem kui ε. See peab näiteks paika lõpliku arvu punktide korral, st kui D= {xk є R| k=1,2,…..n} (xk sisaldava vahemiku pikkus < ε/n), sauti kui punkte on lõpmata palju, aga me saame nad nummerdada(loenduv hulk) , st D={ xk є R|kєN} (xk sisaldava vahemiku pikkus < ε/2 astmes k. Leidub ka muidu hulki, mille Lebesgue mõõt on null. Seega vastavalt Lebesgue’i teoreemile on integreeruv tõkestatud funktsioon, millel on lõplik või loenguv hulk esimest liiki

Matemaatiline analüüs i
thumbnail
3
docx

Kollokvium integraal

Funktsioon uurimine 1. Määramispiirkond; 2. Graafiku sümmeetria; 3. Perioodilisus ( paaris või paaritu); 4. Katkevuspunktid ja pidevuspiirkonnad; 5. Nullkohad ja negatiivsus- ja positiivsuspiirkonnas; 6. Lokaalsed ekstreemumid ja range monotoonsuse piirkond; 7. Graafiku käänupunktid ja kumerus- ning nõgususpiirkonnad; 8. Graafiku püstasümptoodid; 9. Graafiku kaldasümptoodid; 10. Skitseerime graafiku. Integraal Def1 Öeldakse, et funktsiooni F ( x ) on funktsiooni f ( x ) algfunktsioon hulgal X, kui iga x X korral . Lause1 Kui funktsioon F1 ( x ) ja F2 ( x ) on funktsiooni f ( x ) algfunktsioonid, siis leidub selline reaalarv c, nii et F1 ( x ) = F2 ( x ) + c. Def2 Avaldist kujul F ( x ) + C, kus F ( x on funktsiooni f ( x ) mingi algfunktsioon ja C on suvaline kon

Matemaatiline analüüs
thumbnail
42
docx

Määratud integraali ligikaudne arvutamine trapetsi valemiga.

Tallinna Tehnikaülikool Referaat Määratud integraali ligikaudne arvugtamine trapetsi valemiga. Veahinnangud. Näited. Tatjana Kruglova 142442IAPB Sisukord Määratud integraal.................................................................................................................................3 Pindfunktsioon ning selle tuletis........................................................................................................3 Kõverjoonelise trapetsi pindala..........................................................................................................4 Määratud integraali mõiste................................................................................................................5 Definitsioon 1................................................................................................................................6 Määratud integraali omadused......................................

Matemaatiline analüüs 1
thumbnail
18
docx

Matemaatiline analüüs KT2 vastused

23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. Funktsiooni muudu peaosa ja jääkliige. Olgu antud funktsioon, mis on diferentseeruv punktis a. Eeldame, et f(a)0 kasutades mõisteid: x = x - a - argumendi muut kohal a y = f(x) - f(a) - funktsiooni muut kohal a . Näitasime, et Seega kui tähistame ja f'(a) vahe järgmiselt : Kehtib võrdus Püüame avaldada funktsiooni muutu y argumendi muudu x kaudu. Selleks avaldame kõigepealt võrdusest suhte ja korrutame saadud avaldise x-ga. Saame valemi Valemist näeme, et funktsiooni muut y koosneb kahest liidetavast, millest esimene on diferentsiaal dy = f(a)x ja teine on . Mõlemad liidetavad on lõpmatult kahanevad protsessis x 0. Võrdleme neid suurusi x suhtes. Esiteks, eelduse f(a) 0 põhjal saame : Teiseks kehtib valem : Näeme, et esimene liid

Matemaatiline analüüs i
thumbnail
36
pdf

Matemaatiline analüüs

Matemaatiline analüüs 23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu ∆x suhtes, kui ∆x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. Funktsiooni muudu esitus: ∆y = f’(a)∆x + β , kus β = r(∆x)∆x Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu ∆ x suhtes, kui ∆ x läheneb nullile? (tõestada!). funktsiooni muut ∆y koosneb kahest liidetavast, millest esimene on diferentsiaal dy = f’(a)∆x ja teine on β. Mõlemad liidetavad on lõpmatult kahanevad protsessis ∆x → 0. Võrdleme neid suurusi ∆x suhtes. Esiteks, eelduse f’(a)  0 põhjal saame lim dy ∆x= lim f’(a)/∆x* ∆x= lim f’(a) = f(a)  0. ∆x→0 ∆x→0 ∆x→0 Teiseks kehtib lim β/ ∆x = lim r(∆x)∆x /∆x = lim r(∆x) = 0. ∆x→0 ∆x→0 ∆x→0 Näeme, et esimene liidetav, so diferentsiaal

Matemaatiline analüüs 1




Meedia

Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun