1) Funktsiooni määramispiirkonnaks (X) nim. argumendi (x) väärtuste hulka, mille korral funktsiooni (y) väärtust saab leida. 2) Funktsiooni muutumispiirkonnaks (Y) nim. funktsiooni väärtuste hulka. 3) Funktsiooni nullkohtadeks (Fo) nim. Argumendi väärtuste hulka, mille korral funktsiooni väärtus on 0. Leidmine: tuleb panna 0-ga võrduma ehk funktsioon (y) asendatakse 0-ga. 4) Funktsiooni positiivsuspiirkonnaks (F+) nim. argumendi x väärtuste hulka, mille korral funktsiooni y väärtused on positiivsed. Leidmine: võrratus+intervallimeetod 5) Funktsiooni negatiivsuspiirkonnaks (F-) nim. Argumendi x väärtuste hulka, mille korral funktsiooni y väärtused on negatiivsed. Leidmine: võrratus+intervallimeetod 6) Funktsiooni kasvamisvahemikuks nim. Argumendi x väärtuste hulka, mille korral x-i väärtuste
funktsiooni väärtuste hulk on positiivne
Funktsiooni negatiivsuspiirkonnaks nimetatakse nende väärtuste hulka, mille korral
funktsiooni väärtuste hulk on negatiivne
+
X -positiivsuspiirkond
-
X -negatiivsuspiirkond
Parabooli haripunkti leidmine Xh=x1+x2/2, kui parabool ei lõiku x-teljega Xh=-b/2a
Kui x1
Ühtlase kiirusega liikuva keha poolt läbitu teepikkus sõltub ajast, st ( ) Tagasisaadav summa hoiustamisele antud rahasummast sõltub hoiustamise perioodist ehk ajast 2. Mida nimetatakse funktsiooni graafikuks? Kas ringjoon sobib mingi funktsiooni graafikus? Kui reaalarvude hulga X igale elemendile on mingi eeskirja f abil vastavusse seatud ainult üks reaalarv y, siis öeldakse, et hulgas X on määratud funktsioon f, ja kirjutatakse ( ) Funktsiooni ( )graafikuks nimetatakse punktide (x,y) hulka {( )} ( ) xy-tasandil. Funktsiooni graafik on joon võrrandiga ( ). Ringjoon ei saa olla mingi funktsiooni graafik, kuna vertikaalne joon lõikab ringoone kahes punktis. 3. Millist hulka nimetatakse funktsiooni y=f(x) määramispiirkonnaks, millist muutumispiirkonnaks? Millega tuleb arvestada määramispiirkonna leidmisel?
erijuhtudel x a- ja x a+ läheneb f(x) erinevatele arvudele. 12.Pideva funktsiooni definitsioon - Funktsiooni f nimetatakse pidevaks punktis a, kui · f on määratud argumendi väärtusel a, st a X, · eksisteerib lõplik piirväärtus · Pidev punktis a asemel võib kasutada ka sünonüüme pidev kohal a või pidev argumendi väärtusel a. 12.1 Geomeetriliselt tähendab funktsiooni pidevus joone pidevust. 15. Funktsiooni tuletise defintisioon 15.1 Kui funktsioon f omab punktis a lõplikku tuletist, siis öeldakse et ta on selles punktis diferentseeruv . Tuletise arvutamist nim diferentseerimiseks. +tuletised peast! 16. Funktsiooni diferentsiaali definitsioon - Funktsiooni y = f(x) diferentsiaaliks punktis a nimetatakse tuletise f(a) ja argumendi muudu x = x-a korrutist ja tähistatakse dy või df. Seega definitsiooni kohaselt dy = f(a)x . 16.1 19. Joone puutuja definitsioon - Olgu tasandil xy - teljestikus antud joon y = f(x) (st
· Argumendi x muutumispiirkonda nimetatakse funktsiooni f määramispiirkonnaks. Hulka Y = {f(x) || x X} nimetatakse funktsiooni f väärtuste hulgaks. · Funktsiooni esitusviisid. 1. Tabel Funktsiooni argumendi võimalikud väärtused esitatakse tabeli ühes reas (veerus) ja neil vastavad funktsiooni väärtused tabeli teises reas (veerus). On võimalik vaid siis, kui funktsiooni argumendil on lõplik arv väärtusi. 2. Analüütiline Funktsioon esitatakse valemi kujul. Kui vaja, lisatakse ka määramispiirkonna kirjeldus. 3.Graafiline Funktsioon esitatakse graafikuna tasandil ristkoordinaadistikus. Funktsiooni f graafiku definitsioon on järgmine: G = {P = (x, f(x)) || x X} . · Graafiku omadused: o Kui f(x) > 0, siis graafik paikneb ülalpool xtelge. o Kui aga f(x) < 0, siis graafik jääb xteljest allapoole.
· Argumendi x muutumispiirkonda nimetatakse funktsiooni f määramispiirkonnaks. Hulka Y = {f(x) || x X} nimetatakse funktsiooni f väärtuste hulgaks. · Funktsiooni esitusviisid. 1. Tabel Funktsiooni argumendi võimalikud väärtused esitatakse tabeli ühes reas (veerus) ja neil vastavad funktsiooni väärtused tabeli teises reas (veerus). On võimalik vaid siis, kui funktsiooni argumendil on lõplik arv väärtusi. 2. Analüütiline Funktsioon esitatakse valemi kujul. Kui vaja, lisatakse ka määramispiirkonna kirjeldus. 3.Graafiline Funktsioon esitatakse graafikuna tasandil ristkoordinaadistikus. Funktsiooni f graafiku definitsioon on järgmine: G = {P = (x, f(x)) || x X} . · Graafiku omadused: o Kui f(x) > 0, siis graafik paikneb ülalpool xtelge. o Kui aga f(x) < 0, siis graafik jääb xteljest allapoole.
Mida nimetatakse muutuva suuruse muutumispiirkonnaks? (lk 3) Suurust, mis võib omandada erinevaid arvulisi väärtusi, nimetatakse muutuvaks suuruseks ehk muutujaks. Suurust, mille arvuline väärtus ei muutu, nimetatakse jäävaks suuruseks. Näiteks ühtlase liikumise korral on kiirus jääv suurus ja läbitud teepikkus muutuv suurus. Muutuva suuruse kõigi võimalike väärtuste hulka nimetatakse selle suuruse muutumispiirkonnaks 5. Defineerida ühene funktsioon, ühese funktsiooni argument, sõltuv muutuja, määramispiirkond ja väärtuste hulk. (lk 3 - 4) Ühene funktsioon on funktsioon vaid ühe muutujaga ehk y=f(x), puuduvad liitfunktsiooni omadused. Argument ehk muutuja on x ja sõltuv muutuja on y (sellel on oma kindel väärtus, mis sõltub x-st). Muutuva suuruse ehk x-i kõigi võimalike väärtuste hulka nimetatakse selle suuruse muutumispiirkonnaks 6. Millist funktsiooni nimetatakse mitmeseks? (lk 4)
hulka nimetatakse selle suuruse muutumispiirkonnaks. Funktsiooni definitsioon: Olgu antud 2 muutuvat suurust x ja y. Funktsiooniks (ehk üheseks funktsiooniks) nimetatakse kujutist, mis seab suuruse x igale väärtusele tema muutumispiirkonnast vastavusse suuruse y ühe kindla väärtuse. Muutujat x nimetatakse seejuures sõltumatuks muutujaks ehk argumendiks ja muutujat y sõltuvaks muutujaks. Funktsiooni argument, sõltuv muutuja, määramispiirkond ja väärtuste hulk: Olgu antud funktsioon f, mille argumendiks on x ja sõltuvaks muutujaks y. Muutuja y väärtust, milleks funktsioon f kujutab argumendi x, nimetatakse funktsiooni f väärtuseks kohal x ja tähistatakse sümboliga f(x). Seega võime kirjutada seose y = f(x) , (1.1) mis väljendab muutuja y "seotust" argumendiga x funktsiooni f kaudu. Seost (1.1) nimetatakse funktsiooni võrrandiks. Mõnikord kasutatakse funktsiooni ja sõltuva muutuja tähistamiseks ühte ja sama sümbolit. Sellisel juhul omab võrrand (1.1) kuju y
Kõik kommentaarid