Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse Registreeri konto

Funktsioonid ja nende graafikud (0)

5 VÄGA HEA
Punktid
Vasakule Paremale
Funktsioonid ja nende graafikud #1 Funktsioonid ja nende graafikud #2 Funktsioonid ja nende graafikud #3 Funktsioonid ja nende graafikud #4 Funktsioonid ja nende graafikud #5 Funktsioonid ja nende graafikud #6 Funktsioonid ja nende graafikud #7 Funktsioonid ja nende graafikud #8 Funktsioonid ja nende graafikud #9 Funktsioonid ja nende graafikud #10 Funktsioonid ja nende graafikud #11 Funktsioonid ja nende graafikud #12 Funktsioonid ja nende graafikud #13 Funktsioonid ja nende graafikud #14 Funktsioonid ja nende graafikud #15 Funktsioonid ja nende graafikud #16 Funktsioonid ja nende graafikud #17 Funktsioonid ja nende graafikud #18 Funktsioonid ja nende graafikud #19 Funktsioonid ja nende graafikud #20 Funktsioonid ja nende graafikud #21 Funktsioonid ja nende graafikud #22 Funktsioonid ja nende graafikud #23 Funktsioonid ja nende graafikud #24 Funktsioonid ja nende graafikud #25 Funktsioonid ja nende graafikud #26 Funktsioonid ja nende graafikud #27
Punktid 5 punkti Autor soovib selle materjali allalaadimise eest saada 5 punkti.
Leheküljed ~ 27 lehte Lehekülgede arv dokumendis
Aeg2012-10-30 Kuupäev, millal dokument üles laeti
Allalaadimisi 133 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor T . Õppematerjali autor

Märksõnad

Sarnased õppematerjalid

thumbnail
3
doc

Funktsioonid ja nende graafikud

Õppematerjalide loomist toetab AS Topauto/autod, markide Seat, Suzuki, Hyundai ning kasutatud autode müüja üle Eesti 4. Funktsioonid ja nende graafikud Põhiteadmised Võrdeline sõltuvus; pöördvõrdeline sõltuvus; üksühene seos; funktsiooni mõiste; lineaar- ja ruutfunktsioon; funktsiooni määramis- ja muutumispiirkond; funktsiooni nullkohad, positiivsus- ja negatiivsuspiirkonnad; funktsiooni kasvamis- ja kahanemisvahemikud, ekstreemumid; paaris- ja paaritufunktsioon; perioodiline funktsioon; pöördfunktsioon; astme-, eksponent-, logaritm- ja trigonomeetrilised funktsioonid. Põhioskused

Matemaatika
thumbnail
246
pdf

Funktsiooni graafik I õpik

1 10. klass Viljandi Täiskasvanute Gümnaasium KORDAMINE: FUNKTSIOONI GRAAFIK I Joonistel on kuue funktsiooni graafikud. Tee kindlaks, missuguste funktsioonidega on tegemist. 1 2 3 © Allar Veelmaa 2014 2 10. klass Viljandi Täiskasvanute Gümnaasium KORDAMINE: FUNKTSIOONI GRAAFIK II © Allar Veelmaa 2014 3 10

Matemaatika
thumbnail
12
doc

Funktsioonide lahendamine

FUNKTSIOONID. 1. (1997 A) Leidke funktsiooni y = 4x3 ­ 3x2 maksimum- ja miinimumkoht ning kasvamis- ja kahanemisvahemikud. 2 2. (1997 B) Leidke funktsiooni y 2 x määramispiirkond, maksimum- ja x 1 miinimumpunkt ning kasvamis- ja kahanemisvahemikud. 3. Joonisel on antud ruutfunktsiooni y = f(x) ja funktsiooni y = ex graafikud. Leidke a) Ruutfunktsiooni y = f(x) määrav valem; b) Punkti A koordinaadid; c) Funktsiooni y = f(x) nullkohad ja haripunkti koordinaadid; d) Funktsiooni y = ex väärtus kohal, mis vastab funktsiooni y = f(x) absoluutväärtuselt vähimale nullkohale; e) Antud funktsioonide ühine positiivsuspiirkond. 4. (1998) Heinakuhja telglõige on piiratud joonega y = 1 ­ x2 ja sirgega y = 0.

Matemaatika
thumbnail
1
doc

Funktsioonid ja nende uurimine

www.andmill2.planet.ee/gmat.html Funktsioonid · Võrdeline sõltuvus ­ y = ax a · Pöördvõrdeline sõltuvus ­ y= x Funktsiooni uurimine · Nullkohtade hulk ­ X0 : f ( x) = 0 funktsiooni f(x) nullkohtade x1; x2; x3 leidmine · Positiivsuspiirkond ­ X : f ( x) > 0 + · Negatiivsuspiirkond ­ X - : f ( x) < 0 · Kasvamisvahemikud ­ X : f ( x ) > 0 · Kahanemisvahemikud ­ X : f ( x ) < 0 · Maksimumkoht ­

Matemaatika
thumbnail
1
odt

Funktsioonid I

Funktsioone, mille kahanemisvahemik Funktsioone, mille kasvamisvahemik ühtib ühtib määramispiirkonnaga, nimetatakse määramispiirkonnaga, nimetatakse kasvavateks kahanevateks funktsioonideks. funktsioonideks. Paarisfunktsiooni graafik on sümeetriline y- telje suhtes. Astmefunktsioonid : Paaritu funktsiooni graafik on sümeetriline y=X^-2 ehk Y=1/X^2 kordinaatide alguspunkti suhtes.

Matemaatika
thumbnail
30
pdf

Funktsioon loeng 2

y = y (t ) Näide: x = 5 cos(t ) , t [0; 2 ] y = 5 sin(t ) 4 Paaris- ja paaritud funktsioonid Funktsiooni y = f (x) nimetatakse paarisfunktsiooniks, kui f (-x) = f (x) ja paarituks funktsiooniks, kui f (-x) = -f (x) iga x korral määramispiirkonnast X. Paarisfunktsiooni graafik on Paaritu funktsiooni graafik on sümmeetriline y-telje suhtes sümmeetriline 0-punkti suhtes. 6 5 2 x 4 cos ( x) 3 x

Matemaatika
thumbnail
156
pdf

Kõrgem matemaatika

MTMM.00.340 Kõrgem matemaatika 1 2016 KÄRBITUD loengukonspekt Marek Kolk ii Sisukord 0 Tähistused. Reaalarvud 1 0.1 Tähistused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0.2 Kreeka tähestik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0.3 Reaalarvud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0.4 Summa sümbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1 Maatriksid ja determinandid 7 1.1 Maatriksi mõiste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Tehted maatriksitega . . . . . . . . . . . . . . . . . . .

Kõrgem matemaatika
thumbnail
816
pdf

Matemaatika - Õhtuõpik

õhtuõpik 3 Alates 31. märtsist 2014 on raamatu elektrooniline versioon tasuta kättesaadav aadressilt 6htu6pik.ut.ee CC litsentsi alusel (Autorile viitamine + Mitteäriline eesmärk + Jagamine samadel tingimustel 3.0 Eesti litsents (http://creativecommons.org/licenses/by-nc-sa/3.0/ee/). Autoriõigus: Juhan Aru, Kristjan Korjus, Elis Saar ja OÜ Hea Lugu, 2014 Viies, parandatud trükk Toimetaja: Hele Kiisel Illustratsioonid ja graafikud: Elis Saar Korrektor: Maris Makko Kujundaja: Janek Saareoja ISBN 978-9949-489-95-4 (trükis) ISBN 978-9949-489-96-1 (epub) Trükitud trükikojas Print Best 4 Sisukord osa 0 – SISSEJUHATUS . .................... 17 OSA 2 – arvud ..................................... 75 matemaatika meie ümber ................... 20 arvuhulgad .......................................... 78 Matemaatika kui keel ..................

Matemaatika




Meedia

Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri





Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun