Õppematerjalide loomist toetab AS Topauto/autod, markide Seat, Suzuki, Hyundai ning kasutatud autode müüja üle Eesti 4. Funktsioonid ja nende graafikud Põhiteadmised Võrdeline sõltuvus; pöördvõrdeline sõltuvus; üksühene seos; funktsiooni mõiste; lineaar- ja ruutfunktsioon; funktsiooni määramis- ja muutumispiirkond; funktsiooni nullkohad, positiivsus- ja negatiivsuspiirkonnad; funktsiooni kasvamis- ja kahanemisvahemikud, ekstreemumid; paaris- ja paaritufunktsioon; perioodiline funktsioon; pöördfunktsioon; astme-, eksponent-, logaritm- ja trigonomeetrilised funktsioonid. Põhioskused
1 10. klass Viljandi Täiskasvanute Gümnaasium KORDAMINE: FUNKTSIOONI GRAAFIK I Joonistel on kuue funktsiooni graafikud. Tee kindlaks, missuguste funktsioonidega on tegemist. 1 2 3 © Allar Veelmaa 2014 2 10. klass Viljandi Täiskasvanute Gümnaasium KORDAMINE: FUNKTSIOONI GRAAFIK II © Allar Veelmaa 2014 3 10
FUNKTSIOONID. 1. (1997 A) Leidke funktsiooni y = 4x3 3x2 maksimum- ja miinimumkoht ning kasvamis- ja kahanemisvahemikud. 2 2. (1997 B) Leidke funktsiooni y 2 x määramispiirkond, maksimum- ja x 1 miinimumpunkt ning kasvamis- ja kahanemisvahemikud. 3. Joonisel on antud ruutfunktsiooni y = f(x) ja funktsiooni y = ex graafikud. Leidke a) Ruutfunktsiooni y = f(x) määrav valem; b) Punkti A koordinaadid; c) Funktsiooni y = f(x) nullkohad ja haripunkti koordinaadid; d) Funktsiooni y = ex väärtus kohal, mis vastab funktsiooni y = f(x) absoluutväärtuselt vähimale nullkohale; e) Antud funktsioonide ühine positiivsuspiirkond. 4. (1998) Heinakuhja telglõige on piiratud joonega y = 1 x2 ja sirgega y = 0.
www.andmill2.planet.ee/gmat.html Funktsioonid · Võrdeline sõltuvus y = ax a · Pöördvõrdeline sõltuvus y= x Funktsiooni uurimine · Nullkohtade hulk X0 : f ( x) = 0 funktsiooni f(x) nullkohtade x1; x2; x3 leidmine · Positiivsuspiirkond X : f ( x) > 0 + · Negatiivsuspiirkond X - : f ( x) < 0 · Kasvamisvahemikud X : f ( x ) > 0 · Kahanemisvahemikud X : f ( x ) < 0 · Maksimumkoht
Funktsioone, mille kahanemisvahemik Funktsioone, mille kasvamisvahemik ühtib ühtib määramispiirkonnaga, nimetatakse määramispiirkonnaga, nimetatakse kasvavateks kahanevateks funktsioonideks. funktsioonideks. Paarisfunktsiooni graafik on sümeetriline y- telje suhtes. Astmefunktsioonid : Paaritu funktsiooni graafik on sümeetriline y=X^-2 ehk Y=1/X^2 kordinaatide alguspunkti suhtes.
y = y (t ) Näide: x = 5 cos(t ) , t [0; 2 ] y = 5 sin(t ) 4 Paaris- ja paaritud funktsioonid Funktsiooni y = f (x) nimetatakse paarisfunktsiooniks, kui f (-x) = f (x) ja paarituks funktsiooniks, kui f (-x) = -f (x) iga x korral määramispiirkonnast X. Paarisfunktsiooni graafik on Paaritu funktsiooni graafik on sümmeetriline y-telje suhtes sümmeetriline 0-punkti suhtes. 6 5 2 x 4 cos ( x) 3 x
MTMM.00.340 Kõrgem matemaatika 1 2016 KÄRBITUD loengukonspekt Marek Kolk ii Sisukord 0 Tähistused. Reaalarvud 1 0.1 Tähistused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0.2 Kreeka tähestik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0.3 Reaalarvud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0.4 Summa sümbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1 Maatriksid ja determinandid 7 1.1 Maatriksi mõiste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Tehted maatriksitega . . . . . . . . . . . . . . . . . . .
õhtuõpik 3 Alates 31. märtsist 2014 on raamatu elektrooniline versioon tasuta kättesaadav aadressilt 6htu6pik.ut.ee CC litsentsi alusel (Autorile viitamine + Mitteäriline eesmärk + Jagamine samadel tingimustel 3.0 Eesti litsents (http://creativecommons.org/licenses/by-nc-sa/3.0/ee/). Autoriõigus: Juhan Aru, Kristjan Korjus, Elis Saar ja OÜ Hea Lugu, 2014 Viies, parandatud trükk Toimetaja: Hele Kiisel Illustratsioonid ja graafikud: Elis Saar Korrektor: Maris Makko Kujundaja: Janek Saareoja ISBN 978-9949-489-95-4 (trükis) ISBN 978-9949-489-96-1 (epub) Trükitud trükikojas Print Best 4 Sisukord osa 0 – SISSEJUHATUS . .................... 17 OSA 2 – arvud ..................................... 75 matemaatika meie ümber ................... 20 arvuhulgad .......................................... 78 Matemaatika kui keel ..................
Kõik kommentaarid