Valemid ja Mõisted Funktsiooni f(x) tuletis kohal x: f ( x + x) - f ( x) f ( x) = lim x 0 x Funktsiooni jagatise tuletis u u v - uv = v v2 Funktsiooni summa tuletis (u+v)'=u'+v' Funktsiooni korrutise tuletis (c*u)'=c*u' (u*v)'=c'u+cu' Astmefunktsiooni tuletis (xa)'=axa-1 (x)'=1/(2x) Trigonomeetriliste funktsioonide tuletised Logaritmfunktsiooni tuletised (logax)'=1/(x ln a) (lnx)'=1/x Eksponent funktsiooni tuletised (ax)'=axln a (ex)'=ex Liitfunktsioon F ( x) = f (u ) g ( x) Veel reegleid funktsioonide tuletiste kohta: x = 1 1 1 = 2 x x c = 0 Trigonomeetrilised põhivõrrandid sin x = m, x = ( -1) arcsin m + n, n Z n cos x = m, x = ±arccos m + 2n, n Z tan x = m, x = arctan m + n, n Z cot x = m, x = arc cot m + n, n Z Funktsiooni tuletis
Funktsiooni tuletis Paljude matemaatiliste probleemide lahendamine viib tulemusele, et tuleb võtta funktsiooni muudu ja argumendi muudu suhte piirväärtus argumendi muudu lähenemisel 0 st y lim x x 0 Seetõttu on antud sellele piirväärtusele erinimetus ja sümbol. Funktsiooni f(x) muutumise kiirust kohal x0 nimetatakse funktsiooni tuletiseks kohal x0 ja tähistatakse f´`(X) y f ( x 0 x ) f ( x 0 )
Funktsiooni tuletis (jätk) - + sin - sin = 2 sin cos 2 2 Funktsiooni y = sin x tuletis Teoreem: Funktsiooni y = sin x tuletis on cos x. x + x - x x + x + x Tõestus: y = sin( x + x) - sin x = 2 sin cos 2 2 x x = 2 sin cos x + 2 2 x x x 2 sin cos x + sin y 2 2 2 cos x + x
aga väga aeglaselt. Tõelise kiiruse täpsemaks saamiseks on vaja väiksemat ajavahemikku t . Eriti hea on see piirväärtus, millele läheneb keskmine kiirus, kui t 0 . Seda s v = lim t 0 t piirväärtust nimetatakse liikumise hetkeliseks kiiruseks: 32. Funktisooni tuletis on funktsiooni muudu ja argumendi muudu suhte y y = f ( x ) = piirväärtus argumendi muudu lähenemisel nullile. x ehk, f ( x + x) - f ( x) f ( x) = lim x 0 x 1 2 x 4 - tan x 4 x 3
d eksponent- ja logaritmfunktsioone reaalse elu logaritmvõrrandite nähtusi modelleerides ning kohta. Eksponent- uurides. ja logaritmvõrratus. Funktsiooni Õpilane: Füüsika Funktsiooni piirväärtus perioodilisus. 1) selgitab funktsiooni trigonomeetrili ja tuletis Siinus-, koosinus- perioodilisuse mõistet ning siinus-, sed ja koosinus- ja tangensfunktsiooni funktsioonid ja tangensfunktsiooni mõistet; vahelduvvool. graafik ning 2) joonestab siinus-, koosinus- ja Tuletise omadused. tangensfunktsiooni graafikuid ning tähendus
7) lim an bn lim an lim bn n n n 8) lim an bn lim an lim bn n n n 9) lim anbn lim an lim bn n n n an 10) lim lim an lim bn n bn n n 11) Korrutise tuletise sõnastus ja valem (u * v ) ´ = Korrutise tuletis võrdub esimese teguri tuletise ja teise teguri korrutisega, millele on liidetud esimene tegur ja teise teguri tuletise korrutis. (u*v)’ = u’*v+u*v’ ' u 12. Jagatise tuletise sõnastus ja valem ()v =¿ Jagatise tuletis võrdub esimese
Seos teist järku tuletisega. Funktsiooni diferentsiaal on kõverjoonele y = f(x) tõmmatud puutuja ordinaadi muut, mis vastab Oeldakse, et funktsiooni f(x) graafik on kumer punktis a (tapsemini punktis (a, f(a))), kui leidub punkti a argumendi numbrile x=dx. selline -umbrus, et funktsiooni f(x) graafik on argumendi x väärtustel ümbrusest (a - , a + ) allpool 2. Funktsiooni kõrgemat järku tuletised. (tapsemini, mitte ulalpool) puutujat, mis on tõmmatud punktis (a, f(a)) funktsiooni graafikule. Oeldakse, et funktsiooni f(x) graafik on kumer hulgal X, kui sellefunktsiooni graafik on kumer hulga X igas punktis.
*Järeldus x0->x0+ x=> y=f(x0+ x)-f(x0)=>f-ni muut x->0 y->0 *Märkus1 põhilised elementaarf-nid on oma määramispiirkonnas pidevad *Märkus2 u,v ->pidevad f-nid =>u ± v, u*v, u/v(v 0), u(v(x)) pidevad *Katkevuspunktid: Def. Kui mõni pidevuse f-ni tingimustest ei ole täidetud, siis f-n katkev 1) I liiki katkevuspunkt: f(x0)= (x0 MP) (joonis) 2) II liiki katkemispunkt limx->x0-f(x) =A1, limx->x0+f(x)=A2 =>A1 A2(joonis) 12. F-ni tuletis, füüs ja geom. Tõlgendus *ühtlane sirgjooneline liikumine t=t2-t1; s=s2-s1(joonis); vk = s/ t-> hetkkiirust: t->0 =>v=lim t->0 s/ t isel meh. Liikumise hetkkiirust: Newton(1642-1727) ja Leibniz(1646-1716) *DEF f-n punktis x diferentseerunud parajasti siis, kui tuletis selles punktis on olemas (ainsas punktis, v. piirkonnas D). Tuletise leidmise protsessi me nimetame diferentseerimiseks: Lim x->0 y/ x=y' *Märkus: vajadusel võib leida ka
Kõik kommentaarid