Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Ukraina abi Ukraina kaitse vajab abi. Tee annetus täna! Tee annetus täna Sulge
Add link

Funktsiooni tuletis (0)

1 Hindamata
Punktid
Funktsiooni tuletis #1
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 1 leht Lehekülgede arv dokumendis
Aeg2016-03-15 Kuupäev, millal dokument üles laeti
Allalaadimisi 37 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor Jansa98 Õppematerjali autor

Sarnased õppematerjalid

8
doc

Funktsioonid I Funktsiooni tuletis

Funktsioonid I Funktsiooni tuletis Tuletiste tabel:  1 1 c  0 x  1     x x2  x   2 1 x  x    nx n n 1 e   e x x

Matemaatika
3
doc

Funktsiooni tuletiste valemid

Valemid ja Mõisted Funktsiooni f(x) tuletis kohal x: f ( x + x) - f ( x) f ( x) = lim x 0 x Funktsiooni jagatise tuletis u u v - uv = v v2 Funktsiooni summa tuletis (u+v)'=u'+v' Funktsiooni korrutise tuletis (c*u)'=c*u' (u*v)'=c'u+cu' Astmefunktsiooni tuletis (xa)'=axa-1 (x)'=1/(2x) Trigonomeetriliste funktsioonide tuletised Logaritmfunktsiooni tuletised (logax)'=1/(x ln a) (lnx)'=1/x Eksponent funktsiooni tuletised (ax)'=axln a (ex)'=ex Liitfunktsioon F ( x) = f (u ) g ( x) Veel reegleid funktsioonide tuletiste kohta: x = 1 1 1 = 2 x x c = 0 Trigonomeetrilised põhivõrrandid sin x = m, x = ( -1) arcsin m + n, n Z n

Matemaatika
1
doc

Funktsiooni tuletise valemid

Ande Andekas-Lammutaja Matemaatika ­ Funktsiooni tuletis Funktsiooni tuletiseks nimetatakse funktsioonimuudu ja argumendimuudu suhete piirväärtust argumendi muudu lähenedes nullile. lim x xlim f ( x + x ) - f ( x ) y ' = f ' ( x ) =x 0 = 0 y x Funktsiooni tuletise valemid: ' 1 1 =- 2 x x (x 2 ) ' = 2x x ' =1 c' = 0 [cf ( x)] ' = cf ' ( x ) ( x) ' = 1 2 x [ f ( x) ± g ( x)] ' = f ' ( x) ± g ' ( x) (x ) n ' = n x n -1 [ f ( x ) g ( x )] ' = f ' ( x) g ( x) + f ( x) g ' ( x) ' f ( x) f ' ( x) g ( x ) - f ( x) g ' ( x) =

Matemaatika
2
odt

Funtsioonide tuletiste valemid

FUNKTSIOONIDE TULETISED Funktsiooni y=f(x)tuletiseks kohal x nimetatakse funktsiooni muudu ja argumendi muudu suhte piirväärtust, kui argumendi muut läheneb nullile. f ( x + x)- f ( x) f ' ( x)= lim ¿ x 0 x Funktsiooni summa ja vahe tuletis [f (x) + g (x) ]' = f ' (x) + g ' (x) [f (x) - g (x) ]' = f ' (x) - g ' (x) Funktsiooni korrutise tuletis [f (x) * g (x) ]'= f ' (x) *g (x) + f (x) * g ' (x) Funktsiooni jagatise tuletis [ ] f (x) g(x) '= f ' ( x)g (x )- f ( x )g ' ( x) [ g ( x) ] 2 TULETISTE VÄÄRTUSED: (x a )' = a * x a-1 ( a x )' = a x * ln a (e x )' = e x 1 -1 ( )' = 2 x x 1 (log a x)' = xln a 1 (ln x )' = x (sin x)' = cos x (cos x)' = - sind x

Matemaatika
21
pdf

Funktsiooni tuletis (jätk) loeng 6

Funktsiooni tuletis (jätk) - + sin - sin = 2 sin cos 2 2 Funktsiooni y = sin x tuletis Teoreem: Funktsiooni y = sin x tuletis on cos x. x + x - x x + x + x Tõestus: y = sin( x + x) - sin x = 2 sin cos 2 2 x x = 2 sin cos x + 2 2 x x x 2 sin cos x + sin y 2 2 2 cos x + x = = x x x 2 2 1

Matemaatika
12
pdf

Funktsiooni tuletis - loeng 5

Funktsiooni tuletis Rühmatöö Sirgjoonelise liikumise teepikkus s (meetites) sõltub liikumise ajast t (sekundites) järgmiselt: s = 0,3t 2 + t Leida funktsiooni muut. Mida võimaldab see valem arvutada? Leitud valemi abil arvutada ajavahemikul 3 t 5 läbitud teepikkus. Leida funktsiooni muudu ja argumendi muudu suhe. Mida võimaldab see valem arvutada? Leitud valemi abil arvutada keskmine kiirus lõigus 3 t 5 s Leida piirväärtus lim Mida võimaldab see valem arvutada? t 0 t Leitud valemi abil arvutada hetkeline kiirus momendil t = 5 2 Diferentsiaalarvutuse rajajad Isaac Newton Gottfried Wilhelm Leibniz 1643-1727 1646-1716 3 Liikumise kiirus Punkti liikumise seadus: s = f (t) 0 (t = 0)

Algebra I
156
pdf

Kõrgem matemaatika

MTMM.00.340 Kõrgem matemaatika 1 2016 KÄRBITUD loengukonspekt Marek Kolk ii Sisukord 0 Tähistused. Reaalarvud 1 0.1 Tähistused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0.2 Kreeka tähestik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0.3 Reaalarvud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0.4 Summa sümbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1 Maatriksid ja determinandid 7 1.1 Maatriksi mõiste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Tehted maatriksitega . . . . . . . . . . . . . . . . . . . .

Kõrgem matemaatika
22
doc

Kõrgem matemaatika

KORDAMISKÜSIMUSED 2015/2016 Kõrgem matemaatika MTMM. 00.145 (6EAP) 1. Maatriksi mõiste, järk, tähistused, liigid. Maatriks on ristkülikukujuline arvude tabel, milles on m-rida ja n-veergu ja mis on ümbritsetud ümarsulgudega. Maatriksit tähistatakse suure tähega. Kui aij on reaalarvud ning i = 1; 2;...;m ja j = 1; 2;...; n, siis tabelit: nimetatakse täpsemalt (m x n)-maatriksiks ja kasutatakse tähistusi Am x n või Amn. Arvupaari (m; n) nimetatakse maatriksi A mõõtmeteks. Tabelis paiknevaid arve aij nimetatakse maatriksi elementideks. i ­ reaindeks; j ­ veeruindeks. reamaatriks ­ (1 x n); veerumaatriks ­ (m x 1); ruutmaatriks ­ m = n Tähistused: maatriksi järk ­ naturaalarvude paar m x n (ridade ja veergude arv). ruutmaatriksi korral järk n (n = ridade arv = veergude arv). maatriksi liigid: nullmaatriks ­ kõik elemendid 0. tähistus teeta

Kõrgem matemaatika



Märksõnad

Mõisted

nxn

Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri





Uutele kasutajatele e-mailiga aktiveerimisel
10 punkti TASUTA

Konto olemas? Logi sisse

Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun