MATEMAATIKA TÄIENDÕPE VALEMID JA MÕISTED KOOSTANUD LEA PALLAS 1 2 SAATEKS Käesolev trükis sisaldab koolimatemaatika valemeid, lauseid, reegleid ja muid seoseid, mille tundmine on vajalik kõrgema matemaatika ülesannete lahendamisel. Kogumikus on ka mõned kõrgema matemaatika õppimisel vajalikud mõisted, mida koolimatemaatika kursuses ei käsitletud.. 3 KREEKA TÄHESTIK - alfa - nüü - beeta - ksii - gamma - omikron - delta - pii - epsilon - roo - dzeeta - sigma - eeta - tau - teeta - üpsilon
MATEMAATIKA TÄIENDÕPE VALEMID JA MÕISTED KOOSTANUD LEA PALLAS 1 2 SAATEKS Käesolev trükis sisaldab koolimatemaatika valemeid, lauseid, reegleid ja muid seoseid, mille tundmine on vajalik kõrgema matemaatika ülesannete lahendamisel. Kogumikus on ka mõned kõrgema matemaatika õppimisel vajalikud mõisted, mida koolimatemaatika kursuses ei käsitletud.. 3 KREEKA TÄHESTIK Α α alfa Ν ν nüü Β β beeta Ξ ξ ksii Γ γ gamma Ο ο omikron Δ δ delta Π π pii Ε ε epsilon Ρ ρ roo Ζ ζ dzeeta Σ σ sigma
n 0 x tan x lim =1 n 0 x ln (1 + x ) lim =1 n 0 x · Funktsiooni piirväärtuse arvutamine, kui x a, a R Olgu lim f ( x ) = A, lim g ( x ) = B ja k reaalarvuline konstant, siis kehtivad järgmised valemid: x a x a ( 1) lim x a k =k ( 2) lim x a x=a ( 3) lim x a kf = kA ( 4) lim x a [ f ( x ) + g( x ) ] = A + B ( 5) lim x a [ f ( x ) - g( x ) ] = A - B ( 6) lim x a [ f ( x ) g( x ) ] = A B f ( x) A ( 7 ) lim x a g ( x ) = , kus B 0 B ( 8) lim f [ g ( x ) ] = lim f ( y ) , kui lim f ( y ) on olemas
b b2 4ac p p Mitu protsenti moodustab arv a arvust b? x1;2 x1;2 q 2a 2 2 a x 100% Viete i valemid: x1 x2 q x1 x2 p , b Muutumine protsentides a-st b-ni Ruutkolmliikme tegurdamine: ax 2 bx c a(x x1 )(x x2 ) ba Täisnurkne kolmnurk x 100% a a
a cos 7. Võrrandid ja võrratused(lineaar, ruut, 1 1 + tan 2 = murd) cos 8. Parameetrit sisaldavad võrratused(peale Phytagorase teoreem a2+b2=c2 otsitava x veel täheline suurus) Täiendusnurga valemid 9. Biruutvõrrand sin = cos( 90° - ) ax 4 + bx 2 + c = 0 cos = sin ( 90° - ) 10. Võrrandite ja võrrandisüsteemide tan = cot ( 90° - ) lahendamine ja koostamine(tekstül.) cot = tan ( 90° - ) 11. Kaherealine determinant a b 23. Nurga mõiste üldistamine. Nurkade liigitus
Aritmeetiline jada-Jada, mille iga liige alates teisest on võrdne eelneva liikme ja selle jada jaoks mingi kindla arvu summaga nimetatakse aritmeetiliseks jadaks. Seda kindlat arvu nimetatakse aritmeetilise arvu jadaks ja tähistatakse tähega d. an=a1+(n-1)d an+1=an+d » an+1-an=d sn= a1+an/2 x n või sn=2a1+(n-1)d/2 Geomeetriline jada- Jada, mille iga liige alates teisest on võrdne eelneva liikme ja antud jada jaoks mingi kindla arvu korrutisega nimetatakse geomeetriliseks jadaks. Seda kindlat arvu nimetatakse teguriks ja tähistatakse tähega q n-1 n an=a1 x q q=an+1/n sn=a1(q -1)/q-1 Lõpmatult kahaneva geomeetrilise jada summa- S=a1/1-q Arvu ,,A" nimetatakse jada ,,an" tõkestamatul kasvamisel ja tähistatakse sümboliga liman=A n lim1/n=0 Piirväärtus n (tõkestamatul kasvamisel) läheneb nullile. n Piirväärtust
4 V = R 3 cos(180 + ) = - cos c 2 = a 2 + b 2 - 2ab cos Ruumala: 3 tan(180 + ) = tan a2 +b2 -c2 Pindala: S = 4R 2 cos = cot(180 + ) = cot 2ab Korrutamise valemid sin(360 - ) = -sin a + c2 -b2 2 (a+b)² = a² +2ab +b² cos = (a-b)² = a² -2ab +b² 2ac cos(360 - ) = cos
log b a log b a Paarisfunktsioon: f ( -x) = f ( x) , x X Paaritu funktsioon: f (-x) = - f ( x) , x X Perioodiline funktsioon: f ( x + T ) = f ( x) , x X b 4ac - b 2 Parabooli y = ax 2 + bx + c haripunkt P - ; 2a 4a Trigonomeetria põhi valemid: sin sin sin 2 + cos 2 = 1 = tan cot = cos cos 1 1
Kõik kommentaarid