Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse Registreeri konto

Määratud integraal (1)

5 VÄGA HEA
Punktid
Vasakule Paremale
Määratud integraal #1 Määratud integraal #2 Määratud integraal #3 Määratud integraal #4 Määratud integraal #5 Määratud integraal #6 Määratud integraal #7 Määratud integraal #8 Määratud integraal #9 Määratud integraal #10 Määratud integraal #11
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 11 lehte Lehekülgede arv dokumendis
Aeg2009-01-07 Kuupäev, millal dokument üles laeti
Allalaadimisi 180 laadimist Kokku alla laetud
Kommentaarid 1 arvamus Teiste kasutajate poolt lisatud kommentaarid
Autor theman87 Õppematerjali autor

Märksõnad

Sarnased õppematerjalid

thumbnail
11
pdf

Määratud integraal

tähistatakse f ( x) dx = lim f ( ) x n i i a xi 0 i = 1 Arvu a nimetatakse integraali alumiseks rajaks. Arvu b nimetatakse integraali ülemiseks rajaks. Määratud integraali geomeetriliseks vasteks on kõverjoonse trapetsi pindala. b f ( x ) dx = S a abBA Kui kõverjoonne trapets asub allpool x telge, annab määratud integraal tema pindala märgiga "-", sest kõik f ( i ) < 0 . NEWTON-LEIBNIZ'i VALEM Saime kaks valemit kõverjoonse trapetsi pindala arvutamiseks S abBA = F ( b ) - F ( a ) , kus F ( x ) = f ( x ) b S abBA = f ( x ) dx a b Need valemid arvutavad sama pindala, seega f ( x ) dx = F ( b ) - F ( a ) , kus F ( x ) = f ( x )

Matemaatika
thumbnail
7
pdf

Määramata integraalid

Õppekirjandus: [1] Abel, E., Kokk, K. Kõrgem matemaatika (Harjutusülesanded). EMS, Tartu, 2003. [2] Lõhmus, A., Petersen, I., Roos, H. Kõrgema matemaatika ülesannete kogu. "Valgus", Tallinn, 1982. [3] Loone, L., Soomer, V. Matemaatilise analüüsi algkursus. "TÜ Kirjastus", Tartu, 2006. [4] Tõnso, T., Veelmaa, A. Matemaatika XII klassile. "Mathema", Tallinn, 1995. [5] Piskunov, N. Diferentsiaal- ja integraalarvutus. "Valgus", Tallinn, 1981. 3.1 Algfunktsioon ja määramata integraal Kursuse eelnevas osas käsitlesime ühe muutuja funktsiooni y = f (x) tuletise y = f (x) leid- misega seotud küsimusi. Teame, et funktsiooni f (x) = 2x tuletis on f (x) = 2 ja funktsiooni f (x) = sin x tuletis on f (x) = cos x. Vaatleme nüüd vastupidist ülesannet. Olgu antud funktsioon y = f (x). Kuidas leida sellist funktsiooni y = F (x), mille tuletiseks oleks antud funktsioon y = f (x), st kuidas leida funktsiooni y = F (x), kui on teada, et F (x) = f (x)?

Kõrgem matemaatika
thumbnail
18
pdf

Määratud integraal

5 M¨ a¨ aratud integraal 5.1 M¨ a¨ aratud integraali mo ~iste Olgu funktsioon y = f (x) m¨a¨aratud l~oigul [a; b]. Jaotame l~oigu [a; b] suvalisel viisil punktidega x1 , x2 , ... xn-1 n osal~oiguks, kusjuures a = x0 < x1 < x2 < . . . < xk-1 < xk < . . . < xn = b. Tekkinud osal~oigud on [xk-1 ; xk ], kus k = 1, 2, . . . , n. T¨ahistagu xk = xk - xk-1 k-nda osal~oigu pikkust.

Matemaatiline analüüs 2
thumbnail
1
doc

Integraal

Ande Andekas-Lammutaja Matemaatika ­ Integraal Funktsiooni f(x) algfunktsiooniks nimetatakse funktsiooni [F(x)+c], mille tuletis on võrdne f(x). Funktsiooni f(x) algfunktsioonide üldavaldist F(x) + c nimetatakse funktsiooni f määramata integraaliks ning konstanti c nimetatakse määramata konstandiks. Määramata integraali tähistatakse sümboliga f ( x ) dx . Määramata integraal. f ( x)dx =F ( x) +c , kus F'(x) = f(x) x a +1 x 2 dx = a +1 + c , kus a -1 dx =x +c

Matemaatika
thumbnail
25
doc

Määratud integraal ja selle rakendused

avaldubki külgede korrutisega... Ametlikult öeldes: Kui f(x) 0 , siis integraalne alamsumma võrdub arvuliselt kõvera all oleva murdjoonega piiratud seesmise treppkujundi AC0N1C1N2Cn-1NnB pindalaga. MIDA TÄHELDAME, KUI VAATAME INTEGRAALSET ÜLEMSUMMAT? Kui f(x) 0, siis integraalne ÜLEMsumma võrdub arvuliselt kõvera peal oleva murdjoonega piiratud ,,välimise treppkujundi" (viirutatud kujundi) pindalaga. Nii hakkabki väljenduma vaikselt integraal kui pindala , kkdw jms arvutamise vahend b) Integraalse alam ­ja ülemsumma omadusi Olgu funktsioon f(x) pidev lõigul [a, b] ja x n vastava lõigu alamlõigu pikkust iseloomustavad argumendi muudud 1) Kuna igal alamlõigul on funktsiooni vähim väärtus alati kas väiksem funktsiooni suurimast väärtusest või sellega võrdne, siis ka integraalne alamsumma on alati kas väiksem ülemsummast või siis sellega võrdne: ehk:

Matemaatiline analüüs
thumbnail
24
pptx

Kõvertrapetsi pindala arvutamine integraalide abil

Ida-Virumaa kutsehariduskeskus Kõvertrapetsi pindala • Meile seni tuntud pindala valemid on rakendatavad ainult teatud erikujuliste pinnatükkide, nagu ristkülik, romb, kolmnurk, trapets jne puhul. Kõverjoonega piiratud pinnatükkidest oskame leida ainult ringi pindala. Meie järgmiseks ülesandeks on õppida leidma kõverjoonega piiratud pinnatüki suurust integreerimise teel. 1) Esmalt tuleta meelde olulisemad integreerimisvalemid ja reeglid. 2) Summa (vahe) integraal võrdub liidetvate integraalide summaga(vahega) 3) Konstantse teguri võib tuua integraali märgi alt integraali ette. Newton-Leibnizi valem 4) Newton-Leibnizi valem määratud integraali arvutamiseks. 5) Määratud integraali arvutamiseks • leitakse integreeritava funktsiooni algfunktsioon; • leitakse algfunktsiooni väärtused ülemise ja alumise raja kohal; • lahutatakse algfunktsiooni väärtusest ülemise raja kohal algfunktsiooni väärtus alumise raja kohal. 6)

Matemaatika
thumbnail
40
docx

Määratud integraali ligikaudne arvutamine trapetsvalemiga

Tallinna Tehnikaülikool Määratud integraali ligikaudne arvutamine trapetsvalemiga Referaat Koostas: Denis Rästas 155552IAPB Õpperühm: IAPB15 Juhendaja: Gert Tamberg Tallinn 2016 1. MÄÄRATUD INTEGRAAL........................................................................................... 3 1.1. Pindfunktsioon ja tema tuletis..........................................................................3 1.2. Kõverjoonse trapetsi pindala............................................................................4 1.3. Määratud integraali mõiste.............................................................................. 6 1.4. Määratud integraali omadused..........................

Matemaatika
thumbnail
816
pdf

Matemaatika - Õhtuõpik

Teine tuletis, kolmas tuletis jne .................... 331 põhiseosed ...............................................212 Hoo pealt veepommi viskamine* ................. 333 Siinusteoreem .............................................222 Koosinusteoreem ........................................224 integraal ............................................ 340 Trigonomeetria kosmoses: robotkäsi ........... 227 Integreerimine ............................................. 341 Integraal ja üldisemad pindalad ................... 347 trigonomeetria ja perioodilised Kuidas integreerib arvuti? ............................349

Matemaatika



Lisainfo

õppematerjal

Meedia

Kommentaarid (1)

smayle6 profiilipilt
smayle6: Sain vajaliku info kätte :)
11:32 16-02-2009





Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun