Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse Registreeri konto
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Matemaatiline analüüs I konspekt - funktsioon - sarnased materjalid

tuletis, rtus, integraal, muutuja, rtuse, diferentsiaal, osatuletis, piirv, ekstreemum, lahend, rrand, ositi, avaldis, ramata, nimetakse, graafik, puutuja, rdfunktsioon, rrandi, rtusele, jagatise, kasvamis, osatuletised, rakendused, plik, diferentseeruv, hene, igul, mmeetriline, juur, integraalis, tuletiste, arcsin, rahuldab, hendus, pliku, nullile
thumbnail
32
pdf

Matemaatiline analüüs II konspekt - MITME MUUTUJA FUNKTSIOONID

Kordamine eksamiks aines matemaatiline analüüs II (2004/2005 õa kevad) §1. MITME MUUTUJA FUNKTSIOONID 1. Ruum R m , hulgad selles ruumis Def. Kõigi m reaalarvust koosnevate järjestatud süsteemide P = ( x1 ,..., x m ) hulka nimetatakse m-mõõtmeliseks ruumiks. Def. Kui m-mõõtmelises ruumis defineeritakse süsteemide P = ( x1 ,..., x m ) ja Q = ( y1 ,..., y m ) m vaheline kaugus d (P, Q ) valemiga d (P, Q ) = (x - y i ) , siis nimetatakse seda ruumi

Matemaatiline analüüs II
187 allalaadimist
thumbnail
51
pdf

Matemaatilise analüüsi konspekt

Teoreem 3 Olgu funktsioon y =f(x) pidev lõigul [a, b] Siis mistahes väärtuse jaoks, mis asub funktsiooni vähim ja suurima väärtuse vahel m k M leidub vähemalt üks selline punkt x3 [a, b] , et f(x3)=k Järeldus: Kui funktsioon on pidev lõigul [a, b] ja f(x1)>0 ja f(x2)<0, x1 , x 2 [a, b] . Siis leidub niisugune x3 ]x1 , x 2 [ , et f ( x 3 ) = 0 © 2001 - Ivari Horm ([email protected]), Toomas Sarv 9 Funktsiooni tuletis ja selle geomeetriline tähendus. Puutuja ja normaali võrrand. Olgu antud funktsioon y = f (x) Anname argumendile x muudu x Siis funktsioon saab vastava muudu y = f ( x + x ) - f (x) Definitsioon 1 Funktsiooni y = f ( x) tuletiseks nimetatakse piirväärtust y f ( x + x) - f ( x) y ' = lim = lim x 0 x x 0 x y

Matemaatiline analüüs
11 allalaadimist
thumbnail
142
pdf

Matemaatilise analüüsi konspekt TTÜ's

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.8 L~opmatult kahanevate ja l~opmatult kasvavate suuruste v~ordlemine. 43 2.9 Funktsiooni pidevus. Katkevuspunktide liigitus. . . . . . . . . . . 45 ¨ 2.10 Uhepoolne pidevus. Pidevus hulkadel. Elementaarfunktsioonide pidevus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.11 L~oigul pidevate funktsioonide omadusi. . . . . . . . . . . . . . . . 52 3 Tuletis ja diferentsiaal 57 3.1 Tuletise, diferentseeruva funktsiooni ja diferentsiaali m~oisted. . . 57 3.2 N¨aiteid tuletiste kohta rakendustes. . . . . . . . . . . . . . . . . . 60 3.3 Tuletiste arvutamise p~ohireeglid . . . . . . . . . . . . . . . . . . . 61 3.4 Ilmutamata funktsiooni, p¨o¨ordfunktsiooni ja parameetrilise funk- tsiooni diferentseerimine. . . . . . . . . . . . . . . . . . . . . . . . 62

Matemaatiline analüüs
47 allalaadimist
thumbnail
39
pdf

Matemaatiline analüüs I konspekt -Tõkestatud hulgad

hulga X punkte kui ka neid punkte, mis ei kuulu hulka X . Sisepunkt ei saa olla rajapunkt. Sisepunkt on alati kuhjumispunkt. Rajapunkt võib olla kuhjumispunkt. 1 Kordamine matemaatilise analüüsi I eksamiks matemaatika-informaatika teaduskonnas 04/05 õ.a Funktsioon, tema graafik Olgu X mingi reaalarvude hulk. Kui x tähendab mis tahes arvu hulgast X , siis öeldakse, et x on muutuv suurus ehk muutuja hulgas X . Iga arvu x X nimetatakse muutuja x väärtuseks. Definitsioon: Kui igale arvule x X on mingi eeskirja f abil seatud vastavusse üks reaalarv y , siis öeldakse, et hulgas X on määratud funktsioon y = f ( x ) ja kirjutatakse: y = f ( x ) , x X . Muutujat x nimetatakse funktsiooni argumendiks ehk sõltumatuks muutujaks ja muutujat y tema sõltuvaks muutujaks. Hulka X nimetatakse funktsiooni määramispiirkonnaks ja hulka

Matemaatiline analüüs I
73 allalaadimist
thumbnail
11
doc

Matemaatiline analüüs - konspekt II

32. Lokaalse ekstreemumi piisavad tingimused: tingimus I. Olgu x1 funktsiooni f kriitiline punkt. Kui läbides punkti x1 vasakult paremale funktsiooni tuletise märk muutub plussist miinuseks siis on funktsioonil selles punktis lokaalne maksimum. Kui aga läbides punkti x1 vasakult paremale funktsiooni tuletise märk muutub miinusest plussiks siis on funktsioonil selles punktis lokaalne miinimum. Kui funktsioonil eksisteerib teist järku tuletis siis saab lokaalsete ekstreemumite olemasolu kontrollida ka selle abil. Nimelt maksimumpunkti läbides vasakult paremale funktsiooni graafiku puutuja tõus väheneb. See tähendab et funktsiooni tuletis kahaneb. Funktsiooni tuletis kahaneb aga juhul kui teine tuletis on negatiivne. Seevastu miinimupunkti läbides puutuja tõus suureneb, seega tuletis kasvab. Tuletis kasvab aga juhul kui teine tuletis on positiivne. Järelikult kehtib järgmine väide: Lokaalse ekstreemumi piisav tingimus II

Matemaatiline analüüs
349 allalaadimist
thumbnail
9
doc

Matemaatiline analüüs - konspekt I

Funktsiooni mõiste. Olgu antud 2 muutuvat suurust x ja y. Funktsiooniks (ehk üheseks funktsiooniks) nimetatakse kujutist mis seab suuruse x igale väärtusele tema muutumispiirkonnast vastavusse suuruse y ühe kindla väärtuse. Muutujat x nimetatakse seejuures sõltumatuks muutujaks ehk argumendiks ja muutujat y sõltuvaks muutujaks. Funktsioone tähistatakse tavaliselt tähtedega f; g; u; v; ; jne. Olgu antud funktsioon f mille argumendiks on x ja s~oltuvaks muutujaks y. Muutuja y väärtust milleks funktsioon f kujutab argumendi x nimetatakse funktsiooni f väärtuseks kohal x ja tähistatakse sümboliga f(x). Seega, me võime kirjutada seose y = f(x) ; (1.1) mis väljendab muutuja y "seotust" argumendiga x funktsiooni f kaudu. Mõnikord kasutatakse funktsiooni ja sõltuva muutuja tähistamiseks ühte ja sama sümbolit. Sellisel juhul seos (1.1) omab kuju y = y(x).

Matemaatiline analüüs
597 allalaadimist
thumbnail
1080
pdf

Matemaatiline analüüs terve konspekt

Jada piirva¨ artus. ¨ Arv e. Funktsiooni piirva¨ artus. ¨ Joone asumptoodid. ¨ ~ Lopmata ¨ vaikesed ja ~ lopmata ~ suured suurused. Funktsiooni pidevus. Loigul pidevate funktsioonide omadused. Funktsiooni tuletis. Liitfunktsiooni tuletis. Po¨ ordfunktsiooni ¨ tuletis. Parameetri-liselt esitatud funktsiooni tuletis. Ilmutamata ~ funktsiooni tuletis. Logaritmiline diferentseerimine. Pohiliste elementaarfunktsioonide tuletised. ~ Korgemat ¨ jarku tuletised. Leibnizi valem. Funktsiooni diferentsiaalid. Funktsiooni kasvamine ja kahanemine

Matemaatiline analüüs 1
136 allalaadimist
thumbnail
37
docx

Matemaatiline analüüs l.

Üksühese funktsiooni mõiste. Olgu antud funktsioon y = f(x). Vastavalt funktsiooni definitsioonile on tegemist kujutisega, mis seab igale argumendi x väärtusele oma määramispiirkonnast vastavusse ühe kindla y väärtuse. Uksühese funktsiooni pöördfunktsioon. Üksühese funktsiooni y = f(x) pöördfunktsiooniks nimetatakse kujutist, mis seab igale f(x)-le funktsiooni f väärtuste hulgast vastavusse x-i. Pöördfunktsiooni avaldise saame, kui lahendame võrrandi y = f(x) muutuja x suhtes. Vahetavad pöördfunktsioonis kohad esialgse funktsiooni määramispiirkond ja väärtuste hulk. Olgu x = g(y) üksühese funktsiooni y = f(x) pöördfunktsioon. Siis funktsioonid f ja g kompenseerivad teineteist järgmises mõttes. g[f(x)] = x , f[g(y)] = y . Funktsiooni y = f(x) ja tema pöördfunktsiooni x = g(y) graafikud kattuvad xy-teljestikus. Kui aga pöördfunktsiooni x = g(y) avaldises muutujate x ja y kohad vahetada, st esitada ta kujul y = g(x), siis

Matemaatiline analüüs
484 allalaadimist
thumbnail
55
pdf

Matemaatiline analüüs II loengukonspekt

MATEMAATLINE ANALÜÜS II 1. KORDSED INTEGRAALID Kordame kõigepealt mõningaid teemasid Matemaatlise analüüsi I osast. 1.1 Kahe muutuja funktsioonid Kui Tasndi R 2 mingi piirkonna D igale punktile x, y D seatakse ühesel viisil vastavusse arv z, siis öeldakse, et piirkonnas D on määratud kahe muutuja funktsioon z f x, y . Piirkoda D nimetataksefunktsiooni f määramispiirkonnaks. See on mingi piirkond xy-tasandil. Näide 1. Poolsfääri z 1 x2 y 2 määramispiirkonnaks on ring x 2 y2 1. Funktsiooni z ln x y määramispiirkonnaks on pooltasand y x (sirgest y x ülespoole jääv tasandi osa: vaata joonist). Kahe muutja funktsioon ise esitab pinda xyz-ruumis (ruumis R 3 ). Näide 2

Matemaatiline analüüs II
69 allalaadimist
thumbnail
142
pdf

Matemaatiline analüüs I

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.8 L~opmatult kahanevate ja l~opmatult kasvavate suuruste v~ordlemine. 43 2.9 Funktsiooni pidevus. Katkevuspunktide liigitus. . . . . . . . . . . 45 ¨ 2.10 Uhepoolne pidevus. Pidevus hulkadel. Elementaarfunktsioonide pidevus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.11 L~oigul pidevate funktsioonide omadusi. . . . . . . . . . . . . . . . 52 3 Tuletis ja diferentsiaal 57 3.1 Tuletise, diferentseeruva funktsiooni ja diferentsiaali m~oisted. . . 57 3.2 N¨aiteid tuletiste kohta rakendustes. . . . . . . . . . . . . . . . . . 60 3.3 Tuletiste arvutamise p~ohireeglid . . . . . . . . . . . . . . . . . . . 61 3.4 Ilmutamata funktsiooni, p¨o¨ordfunktsiooni ja parameetrilise funk- tsiooni diferentseerimine. . . . . . . . . . . . . . . . . . . . . . . . 62

Matemaatika
41 allalaadimist
thumbnail
82
docx

Matemaatiline analüüs I kordamine eksamiks

Lähtume võrratustest (4.3), neist saame, et ehk Kuna koosinusfunktsioon on pidev kohal a = 0, siis ning lause 3.6 kohaselt 4.3 - Seosega määratud funktsioon f : D → R, kus D := (−1, 0)∪(0,∞) , on esitatav funktsioonide u = (1 + x)1/x ja y = ln u liitfunktsioonina. Kuna (s.t. kui x → 0, siis u → e) ja logaritmfunktsioon on pidev kohal e (s.t. siis 21. Tuletis ja diferentseeruvus. Diferentseeruva funkstiooni pidevus (*) Defineerida funktsiooni tuletis ja diferentseeruvus antud punktis. Funktsiooni f tuletiseks intervalli D punktis a nimetatakse (lõplikku või lõpmatut) piirväärtust (5.1) kui see eksisteerib. Kui piirväärtus (5.1) on lõplik (s.t. f′ (a) ∈ R), siis öeldakse, et funktsioon f on diferentseeruv punktis a ∈ D (ütleme ka diferentseeruv kohal a).

Matemaatiline analüüs
54 allalaadimist
thumbnail
24
pdf

MATEMAATILINE ANALÜÜS I. KORDAMISKÜSIMUSED

• Argumentide x hulka X nimetatakse määramispiirkonnaks. • Suuruse y muutumispiirkonda Y nimetatakse muutumispiirkonnaks. Funktsioon on antud, kui on teada: a) F-ni määramispiirkond X b) Eeskiri, mis seab argumendi x igale väärtusele piirkonnas X vastavusse funktsiooni y väärtuse. 3. Ilmutamata ja ilmutatud kujul funktsioon. Näited. Ilmutatud funktsiooniks nimetatakse niisugust funktsiooni, kus funktsiooni esitava võrduse vasakul pool on ainult sõltuv muutuja y ja paremal pool muutujast x sõltuv avaldis. Ilmutamata funktsiooniks nimetatakse niisugust funktsiooni, mille väärtused leitakse x ja y siduvast võrrandist (üldjuhul f(x; y) = 0). N: ilmutatud f-nid: y = 2x+1, ilmutamata kujul: x2 + y2 = 1 4. Funktsiooni graafik (definitsioon, piltlik esitus). Funktsiooni y = f(x) graafikuks nimetatakse kõigi niisuguste punktide (x, f(x)) hulka, kus x ∈ X. Lühidalt, Funktsiooni graafik = { (X, f(x)) : x ∈ X } 5

Matemaatiline analüüs 1
25 allalaadimist
thumbnail
13
docx

Matemaatiline analüüs I KT

Kui see on nii, on funktsioon üksühene. Üksühesust saab määrata ka nt graafiku abil - kui suvaline x-teljega paralleelne sirge läbib f-ni graafikut maksimaalselt ühes punktis, on funktsioon ühene. Üksühese funktsiooni pöördfunktsioon ­ Üksühese funktsiooni y = f(x) pöördfunktsiooniks nimetatakse kujutist, mis seab igale f(x)-le funktsiooni f väärtuste hulgast vastavusse x-i. Pöördfunktsiooni avaldise saame, kui lahendame y= f(x) muutuja x suhtes. Pöördfunktsioonis funktsiooni argument ja muutuja vahetavad kohad, samuti vahetavad kohad määramis- ja muutumispiirkond. g[ f(x) ] = x, f[ g(y) ] = y Kui g on f-ni f pöördfunktsioon, siis f on g pöördfunktsioon. Nende funktsioonide graafikud on sümmeetrilised sirge y = x suhtes (peegelduvad). Logaritmfunktsioon ­ on eksponentfunktsiooni pöördfunktsioon, sest x-teljega paralleelne sirge läbib eksponentfunktsiooni y = graafikut maksimaalselt ühes punktis.

Matemaatiline analüüs
136 allalaadimist
thumbnail
4
doc

Matemaatiline analüüs - teooria spikker

27. Trigonomeetriliste avaldiste integreerimine. 28. Määratud integraal ja selle omadused. 1. Funktsioon. Määramispiirkond, väärtuste hulk. Me vaatleme integraali (sinx,cosx)dx Keskväärtusteoreem (tõestusega). Pöördfunktsioon. 1. Universaalne asendus tan x/2=t Olgu y=f(x) pidev lõigul [a,b] Jaotame lõigu n osaks punktidega 2. Funktsiooni piirväärtus. Teoreemid piirväärtuste

Matemaatiline analüüs
973 allalaadimist
thumbnail
26
doc

Matemaatiline analüüs I - kordamine eksamiks

x 1 Samas |sin | 1 ja lim x0 x2 = 0, seega A = 0. x Teoreem 4. (piirväärtuse monotoonsus) Kui punkti a teatavas ümbruses U(a) kehtib g(x) < f(x), () siis ka lim xa g(x) lim xa f(x). () Teoreem 5. (keskmise muutuja omadus) Kui punkti a mingis ümbruses g(x) f(x) h(x) ja lim xa g(x) = lim xa h(x) = A , siis eksisteerib ka piirväärtus lim xa f(x) = A. Teoreem 6. Kui f on elementaarfunktsioon ja a X, siis lim xa f(x) = f(a). 3. Ühepoolsed piirväärtused Vaatleme piirprotsesse: 1. x a, x > a ­ lähenemine paremalt, s.o. parempoolne piirväärtus.

Matemaatiline analüüs i
687 allalaadimist
thumbnail
6
docx

Matemaatiline analüüs I KT konspekt vähendatud programm

X=R ja Y=(0; ). Trigonomeetrilised funktsioonid on y = sin x, y= cos x, y = tan x ja y = cot x. y = sin x : X = R, Y = [-1, 1] , y = cos x : X = R, Y = [-1, 1] , y = tan x : X = R { (2k+1)/2 * ||k Z}Y=R y = cot x : X = R {k || k Z}, Y = R. + graafikud ! 4. Üksühene funktsioon- Iga y korral funktsiooni väärtuste hulgast leidub x ainult nii, et valitud y on selle x-i kujutiseks. Üksühese funktsiooni korral on võrrand y = f(x) muutuja x suhtes üheselt lahenduv. Üksühese funktsiooni pöördfunktsioon on kujutis, mis seab igale f(x)-le funktsiooni f väärtuste hulgast vastavusse x-i. Pöördfunktsiooni avaldise saab, kui avaldada funktsioon y = f(x) muutuja x suhtes. Pöördfunktsioonis vahetavad argument ja sõltuv muutuja kohad. Samuti vahetuvad muutumis- ja määramispiirkond. Kui x ja y vahetada on nad peegelpildis sirge y=x suhtes. Logaritmfunktsioon on eksponentfunktsiooni pöördfunktsioon

Matemaatiline analüüs
143 allalaadimist
thumbnail
13
doc

Matemaatiline analüüs I 1 kt teooria

Def.Trigonomeetrilised funktsioonid on funktsioonid kujul y=sinx,y=cosx,y=tanx ja y=cotx radiaanides antud argumendiga x. Määramispiirkonnad ja väärtuste hulgad on järgmised: 4. Def. Eeldame, et argument x on funktsiooni väärtuse f(x) kaudu üheselt määratud, st, et iga y Y leidub ainult üks x nii, et valitud y on selle x-I kujutiseks. Kui see on nii, siis öeldakse, et funktsioon f on üksühene. Üksühese funktsiooni korral on võrrand y=f(x) muutuja x suhtes üheselt lahenduv. Def. Üksühese funktsiooni y=f(x) pöördfunktsiooniks nimetatakse kujutist, mis seab igale f(x)-le funktsiooni f väärtuste hulgast vastavusse x-i. Pöördfunktsioonis funktsiooni argument ja sõltuv muutuja vahetavad oma kohad, st kui funktsiooni f argumendiks on x ja sõltuvaks muutujaks y, siis funktsiooni f pöördfunktsiooni argumendiks on y ja sõltuvaks muutujaks y. Samuti vahetuvad

Matemaatiline analüüs 2
103 allalaadimist
thumbnail
13
doc

Matemaatiline analüüs I 1. kt teooria

Def.Trigonomeetrilised funktsioonid on funktsioonid kujul y=sinx,y=cosx,y=tanx ja y=cotx radiaanides antud argumendiga x. Määramispiirkonnad ja väärtuste hulgad on järgmised: 4. Def. Eeldame, et argument x on funktsiooni väärtuse f(x) kaudu üheselt määratud, st, et iga y Y leidub ainult üks x nii, et valitud y on selle x-I kujutiseks. Kui see on nii, siis öeldakse, et funktsioon f on üksühene. Üksühese funktsiooni korral on võrrand y=f(x) muutuja x suhtes üheselt lahenduv. Def. Üksühese funktsiooni y=f(x) pöördfunktsiooniks nimetatakse kujutist, mis seab igale f(x)-le funktsiooni f väärtuste hulgast vastavusse x-i. Pöördfunktsioonis funktsiooni argument ja sõltuv muutuja vahetavad oma kohad, st kui funktsiooni f argumendiks on x ja sõltuvaks muutujaks y, siis funktsiooni f pöördfunktsiooni argumendiks on y ja sõltuvaks muutujaks y. Samuti vahetuvad

Matemaatika analüüs I
297 allalaadimist
thumbnail
15
docx

Matemaatiline analüüs I kontrolltöö

d.v. Suuruse miinus lõpmatuks ümbruseks nim suvalist vahemikku (-M;-), kus M>0. Arv x kuulub minus lõpmatuse ümbrusesse kui x<-M. e. Tõkestatud hulga definitsioon Reaalarvudest koosnevat hulka A nim tõkestatuks, kui leidub lõplik vahemik (a,b) nii, et A(a,b) 2. Jääv ja muutuv suurus. Suuruse muutumispiirkond. Funktsiooni definitsioon. Funktsiooni argument, sõltuv muutuja, määramispiirkond ja väärtuste hulk. Funktsiooni esitamine tabelina ja analüütiliselt. Funktsiooni graafiku mõiste. Graafiku omadused. a. Jääv ja muutuv suurus a.i. Muutujaks ehk muutuvaks suuruseks nim suurust, mis võib omandada erinevaid arvulisi väärtusi. a.ii. Jäävaks suuruseks nim suurust, mille arvuline väärtus ei muutu. b. Suuruse muutumispiirkond

Matemaatiline analüüs
51 allalaadimist
thumbnail
20
docx

Matemaatiline analüüs II kontrolltöö

Matemaatiline analüüs II kontrolltöö Punktid 23-45 23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile?(Tõestada) Loetleda diferentsiaali omadused. a. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana b. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile?(Tõestada) c. Loetleda diferentsiaali omadused c.1. c.2. c.3. c.4. c.5. 24. Funktsiooni lokaalsete ekstreemumite definitsioonid.Sõnastada ja tõestada Fermat' lemma. a. Funktsiooni lokaalsete ekstreemumite definitsioonid a.1

Matemaatiline analüüs
122 allalaadimist
thumbnail
23
docx

MATEMAATILINE ANALÜÜS TÖÖ VASTUSED

paremal pool avaldis, mis võib sisaldada muutujat x ,kuid mitte y. · Ilmutamata funktsioon ­ Funktsiooni ilmutamata kujuks on võrrad, mis sisaldab x ja y läbisegi · Parameetrilisel kujul antud joon ­ Olgu antud lõigul kaks funktsiooni ja . Kirjutame nad üles süsteemina: Süsteem saab iga korral ühe kindla arvupaari, ehk tasandil punkti ristkordinaatidega . Üldiselt vastavad muutujale t ka erinevad tasandi punktid, kui muutuja t jookseb läbi kogu lõigu, siis t-le vastav punkt kujundab tasandile vastava joone. Muutujat t nimetame joone parameetriks. · Parameetrilisel kujul antud funktsioon ­ Vaateleme funktsiooni ja lisaks muutujale x ja y toome ka sisse kolmanda muutuja t (parameetri). Olgu muutuja x parameetri t funktsioon ehk , siis saab muutujat y avaldada parameetri t kaudu. tähistades saame . Võtame need kaks võrrandit kokku ühte süsteemi

Matemaatika analüüs I
104 allalaadimist
thumbnail
18
docx

Matemaatiline analüüs KT2 vastused

23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. Funktsiooni muudu peaosa ja jääkliige. Olgu antud funktsioon, mis on diferentseeruv punktis a. Eeldame, et f(a)0 kasutades mõisteid: x = x - a - argumendi muut kohal a y = f(x) - f(a) - funktsiooni muut kohal a . Näitasime, et Seega kui tähistame ja f'(a) vahe järgmiselt : Kehtib võrdus Püüame avaldada funktsiooni muutu y argumendi muudu x kaudu. Selleks

Matemaatiline analüüs I
120 allalaadimist
thumbnail
11
doc

Matmaatiline analüüs I 1. teooriatöö konspekt

muutumispiirkonnaks. On antud 2 muutuvat suurust x ja y. Funktsiooniks (ehk üheseks funktsiooniks) nimetatakse kujutist, mis seab suuruse x igale väärtusele tema muutumispiirkonnast vastavusse suuruse y ühe kindla väärtuse. Muutujat x nimetatakse seejuures sõltumatuks muutujaks ehk argumendiks ja muutujat y sõltuvaks muutujaks. Olgu antud funktsioon f, mille argumendiks on x ja sõltuvaks muutujaks y. Muutuja y väärtust, milleks funktsioon f kujutab argumendi x, nimetatakse funktsiooni f väärtuseks kohal x ja tähistatakse sümboliga f(x). Seega võimekirjutada seose y = f(x) mis väljendab muutuja y "seotust" argumendiga x funktsiooni f kaudu. Seost nimetatakse funktsiooni võrrandiks. Funktsiooni esitusviisid: 1)tabel 2)analüütiline 3)graafiline G = {P = (x, f(x)) || x X} Vaatleme joont G, mis

Matemaatiline analüüs
246 allalaadimist
thumbnail
8
docx

Matemaatiline analüüs KT2

20. Esitada funktsiooni muut diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? Tõestada ei ole vaja. Funktsiooni muudu peaosa ja jääkliige. Olgu antud funktsioon, mis on diferentseeruv punktis a. Eeldame, et f (a)0. Valemist näeme, et funktsiooni muut y koosneb kahest liidetavast, millest esimene on diferentsiaal dy = f(a)x ja teine on . Mõlemad liidetavad on lõpmatult kahanevad protsessis x 0. Näeme, et esimene liidetav, so diferentsiaal dy on sama järku lõpmatult kahanev suurus kui x ja teine liidetav on kõrgemat järku lõpmatult kahanev suurus x suhtes. Järelikult väikese x korral hakkab diferentsiaal funktsiooni muudu avaldises domineerima. Seetõttu võime lugeda diferentsiaali dy funktsiooni muudu peaosaks. Jääkliikme võib väikese x korral funktsiooni muudu avaldises ära jätta

Matemaatiline analüüs
231 allalaadimist
thumbnail
3
docx

Matemaatiline analüüs 1

Arvutame lim(x0)?sinx/x?. Elementaarfunktsioon sinx/x ei ole x = 0 korral määratud (tekib määramatus y = f(x) - f(a) - funktsiooni muut kohal a . 0/0). Piirväärtuse arvutamisel kasutame l'Hospitali reeglit: Näitasime, et 27Olgu funktsioon y = f(x) diferentseeruv hulgas D. Siis on tema tuletis f hulgas D määratud funktsioon. Oletame, et f on samuti diferentseeruv hulgas D. Siis saame me arvutada funktsiooni f tuletise ehk funktsiooni f teise tuletise, mida tähistatakse f. Seda protseduuri võib jätkata

Matemaatiline analüüs 1
66 allalaadimist
thumbnail
22
docx

Matemaatika analüüs I konspekt

x < ∞. Analoogselt ( -∞, b ), [ c, ∞ ), (-∞, d]. ( -∞, ∞) = R Olgu muutuva suuruse väärtused x1, x2, x3, … xn, …, kusjuures i < k. Räägitakse, et xi on eelnev väärtus ja xk on järgnev väärtus. Kasvava muutuva suuruse korral on iga järgnev väärtus suurem kui eelnev väärtus. Kahaneva muutuva suuruse korral on iga järgnev väärtus väiksem kui eelnev väärtus. Funktsioon Funktsioon on eeskiri, mis seab ühe muutuja x igale väärtusele piirkonnast X vastavusse teise muutuja y ühe kindla väärtuse. Muutuja x – sõltumatu muutuja ehk argument. Muutuja y – sõltuv muutuja ehk funktsioon. Argumendi x väärtuste hulk X on funktsiooni määrmaispiirkond. Funktsiooni väärtuste hulk, kus vastab argumendi väärtuste hulk, kus vastab argumendi väärtuste hulgale, on funktsiooni muutumispiirkond. Tähised: y = f (x) , y = y (x), y = g (x) Võib olla x = x (t) x- funktsioon t- argument S=S (r)

Matemaatika analüüs i
24 allalaadimist
thumbnail
8
docx

Matemaatiline analüüs I - I teooria töö

4. · Üksühese funktsiooni mõiste. Olgu antud funktsioon y = f (x). Eeldame, et ka argument x funktsiooni v¨aärtuse f (x) kaudu üheselt määratud. See tähendab, et iga y korral hulgast Y leidub ainult üks x nii, et valitud y on selle xi kujutiseks. Kui see on nii, siis öeldakse, et funktsioon f on üksühene. Üksühese funktsiooni korral on võrrand y = f (x) muutuja x suhtes üheselt lahenduv. · Üksühese funktsiooni pöördfunktsioon. Üksühese funktsiooni y = f(x) pöördfunktsiooniks nimetatakse kujutist, mis seab igale f(x)le funktsiooni f väärtuste hulgast vastavusse xi. · Seosed funktsiooni ja pöördfunktsiooni vahel: o Olgu x = g(y) üksühese funktsiooni y = f(x) pöördfunktsioon. Siis funktsioonid f ja g kompenseerivad teineteist järgmises mõttes

Matemaatika analüüs I
485 allalaadimist
thumbnail
20
docx

MATEMAATILINE ANALÜÜS I

Weierstrass teoreem: Lõigus pidev funktsioon on tõkestatud selles lõigus Weierstrass teoreem: Lõigus pideval funktsioonil on olemas ekstremaalsed väärtused selles lõigus Bolzano-Cauchy teoreem: lõigus pidev funktsioon omab iga väärtust, mis paikneb ekstremaalsete väärtuse vahel Teoreem: Lõigus {a,b} pideva ja rangelt monotoonse funktsiooni f(x) pöördufunktsioon on pidev lõigus otspunktidega f(a) ja f(b). 13. Funktsiooni tuletis (definitsioon). Selle füüsikaline ja geomeetriline tõlgendus. Näiteid. Tähistused. Millal funktsiooni tuletis puudub? Definitsioon: kui argumendi muudu lähenemisel nullile funktsiooni f(x) muudu ja argumendi muudu suhte korral x on olemas poorväärtus, siis nimetatakse seda piirväärtust funktsiooni f(x) tuletiseks kohal x Füüsikaline ja geomeetriline tõlgendus: füüsikaline tõlgendus – KIIRENDUS;

Matemaatiline analüüs 1
36 allalaadimist
thumbnail
16
docx

Matemaatiline analüüs 2 KT

KT 2, MAT. ANALÜÜS 18. Esitada funktsiooni muut diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu ∆x suhtes, kui ∆x läheneb nullile? Tõestada ei ole vaja.  ∆y = f’(a)∆x + β  Diferentsiaal ja jääkliige on lõpmatult kahanevad protsessis ∆x → 0. 19. Funktsiooni lokaalsete ekstreemumite definitsioonid. Sõnastada Fermat’ lemma (tõestust ei küsi). Öeldakse, et funktsioonil f on punktis x1 lokaalne maksimum, kui 1. funktsioon f on määratud punkti x1 mingis ümbruses (x1 − ɛ, x1 + ɛ); 2. iga x ∈ (x1 − ɛ, x1 + ɛ) korral kehtib võrratus f(x) ≤ f(x1).

Matemaatika
14 allalaadimist
thumbnail
7
docx

Matemaatiline analüüs 1 teooria

1. Mitme muutuja funktsiooni definitsioon. Mitme muutuja funktsiooni määramispiirkonna definitsioon (kahe ja kolme muutuja funktsiooni määramispiirkond). Erinevad piirkonnad, piirkonna rajajoon. Tõkestatud piirkond. Kui kahe teineteisest sõltumatu muutuva suuruse x ja y igale väärtuspaarile (x;y) mingisugusest nende muutumispiirkonnast D vastab suuruse z väärtus, siis öeldakse, et z on kahe sõltumatu muutuja x ja y funktsioon, mis on määratud piirkonnas D. Kahe muutuja funktsiooni z märgitakse kujul z=f(x,y). Argumentide x ja y väärtuspaaride (x;y) hulka, mille puhul funktsioon z=f(x,y) on määratud, nim. selle funktsiooni määramispiirkonnaks. Kui x ja y iga väärtuspaari kujutada xy-tasapinna punktina M(x;y), siis funktsiooni määramispiirkonda kujutab teatud punktide hulk tasapinnal. Ka seda punktide hulka nim. funktsiooni määramispiirkonnaks

Matemaatiline analüüs 1
83 allalaadimist
thumbnail
36
pdf

Matemaatiline analüüs

Matemaatiline analüüs 23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu ∆x suhtes, kui ∆x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. Funktsiooni muudu esitus: ∆y = f’(a)∆x + β , kus β = r(∆x)∆x Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu ∆ x suhtes, kui ∆ x läheneb nullile? (tõestada!). funktsiooni muut ∆y koosneb kahest liidetavast, millest esimene on diferentsiaal dy = f’(a)∆x ja teine on β. Mõlemad liidetavad on lõpmatult kahanevad protsessis ∆x → 0. Võrdleme neid suurusi ∆x suhtes. Esiteks, eelduse f’(a)  0 põhjal saame lim dy ∆x= lim f’(a)/∆x* ∆x= lim f’(a) = f(a)  0. ∆x→0 ∆x→0 ∆x→0 Teiseks kehtib

Matemaatiline analüüs 1
13 allalaadimist
thumbnail
10
docx

Matemaatiline analüüs I 1. teooria KT

ühes reas (veerus) ja neil vastavad funktsiooni väärtused tabeli teises reas (veerus). On võimalik vaid siis, kui funktsiooni argumendil on lõplik arv väärtusi. Analüütiline esitusviis. Funktsioon esitatakse valemi kujul. Kui vaja, lisatakse ka määramispiirkonna kirjeldus. Graafiline esitusviis. Funktsioon esitatakse graafikuna tasandil ristkoordinaadistikus. Olgu antud funktsioon f, mille argument on x, sõltuv muutuja y ja määramispiirkond X. Kanname tasandile ristuvad x- ja y-teljed. Vaatleme selles teljestikus joont G, mis koosneb kõikvõimalikest punk- tidest P = (x,f(x)), kusjuures P esimene koordinaat x jookseb läbi kogu määramispiirkonna X. Seda joont nimetataksegi funtsiooni f graafikuks. Seega, lühidalt kirjutades on funktsiooni f graafiku definitsioon järgmine: G = {P = (x,f(x))||x X}.

Matemaatiline analüüs 1
110 allalaadimist
thumbnail
23
doc

Matemaatiline analüüs KT1 vastused

nimetatakse muutuvaks suuruseks ehk muutujaks. Suurust, mille arvuline väärtus ei muutu, nimetatakse jäävaks suuruseks. Suuruse muutumispiirkond- Muutuva suuruse kõigi võimalike väärtuste hulka nimetatakse selle suuruse muutumispiirkonnaks. Funktsiooni definitsioon- Olgu antud 2 muutuvat suurust x ja y. Funktsiooniks nimetatakse kujutist, mis seab suuruse x igale väärtusele tema muutumispiirkonnast vastavusse suuruse y ühe kindla väärtuse. Funktsiooni argument- muutuja x, sõltumatu. Sõltuv muutuja- muutuja y. Määramispiirkond- argumendi x muutumispiirkonda. Tähis X. y= f(x). Väärtuste hulk- Hulka Y = {f(x) || x kuulub X} Funktsiooni esitamine tabelina- Funktsiooni argumendi võimalikud väärtused esitatakse tabeli ühes reas (veerus) ja neil vastavad funktsiooni väärtused tabeli teises reas (veerus). On võimalik vaid siis, kui funktsiooni argumendil on lõplik arv väärtusi. Funktsiooni esitamine analüütiliselt- Funktsioon esitatakse valemi kujul

Matemaatiline analüüs I
104 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun