Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

MÄ Ä R AMA T A I N T EGR A A L - sarnased materjalid

integraal, muutuja, tuletis, arctan, algfunktsioon, nimetaja, kordajad, avaldist, tuletiste, arcsin, integreerimine, nimetajas, diferentsiaal, avaldise, saime, astmes, kordajate, suvaline, teoreem, const, põhivalemid, ositi, vaatleme, avaldiste, teguriteks, määramiseks, integraalid, paarisarv, integraalarvutus, lõpmata, konstantne, integraaliks
thumbnail
11
doc

Määramata integraal

INTEGRAALARVUTUS MÄÄRAMATA INTEGRAAL Def Funktsiooni f(x) algfunktsiooniks nimetatakse niisugust funktsiooni y = F(x), mille tuletis võrdub funktsiooniga f(x): F ( x ) = f ( x ) . Näide: Funktsiooni y = 2 x algfunktsioon on y = x 2 , sest ( x 2 ) = 2 x . Antud funktsioonil on mitu algfunktsiooni, sest kui F ( x ) = f ( x ) , siis [ F ( x ) + C ] = F ( x ) = f ( x ) , kus C on suvaline konstant. Funktsioonil on lõpmata palju algfunktsioone, mis erinevad üksteisest konstantse liidetava poolest. Funktsiooni y = f ( x ) algfunktsiooniks on kõik funktsioonid y = F ( x ) + C . Teoreem: Antud funktsiooni mistahes kaks algfunktsiooni võivad teineteisest erineda ülimalt konstantse liidetava poolest:

Kõrgem matemaatika
191 allalaadimist
thumbnail
7
pdf

Määramata integraalid

Määramata integraalid Õppekirjandus: [1] Abel, E., Kokk, K. Kõrgem matemaatika (Harjutusülesanded). EMS, Tartu, 2003. [2] Lõhmus, A., Petersen, I., Roos, H. Kõrgema matemaatika ülesannete kogu. "Valgus", Tallinn, 1982. [3] Loone, L., Soomer, V. Matemaatilise analüüsi algkursus. "TÜ Kirjastus", Tartu, 2006. [4] Tõnso, T., Veelmaa, A. Matemaatika XII klassile. "Mathema", Tallinn, 1995. [5] Piskunov, N. Diferentsiaal- ja integraalarvutus. "Valgus", Tallinn, 1981. 3.1 Algfunktsioon ja määramata integraal Kursuse eelnevas osas käsitlesime ühe muutuja funktsiooni y = f (x) tuletise y = f (x) leid- misega seotud küsimusi. Teame, et funktsiooni f (x) = 2x tuletis on f (x) = 2 ja funktsiooni f (x) = sin x tuletis on f (x) = cos x. Vaatleme nüüd vastupidist ülesannet. Olgu antud funktsioon y = f (x). Kuidas leida sellist funktsiooni y = F (x), mille tuletiseks oleks antud funktsioon y = f (x), st kuidas leida funktsiooni y = F (x), kui on teada, et F (x) = f (x)?

Kõrgem matemaatika
172 allalaadimist
thumbnail
9
doc

Diferentseerimise ja integreerimise valemid

u v ­ v u u = v v2 = v x v2 f ( x) dx = ln f ( x) + c Parameetrilisel kujul antud funktsiooni tuletis, kus x = (t) ja y = (t) yt ( y x ) t y txt ­ y t xt y x = ja y x = y x = xt xt ( xt ) 3 Nr Diferentseerimise valemid Diferentseerimise valemid Integreerimise valemid Lihtfunktsioon Liitfunktsioon 1 (C)'=0 0 dx = c

Diferentsiaal-ja...
86 allalaadimist
thumbnail
9
doc

INTEGREERIMISE VALEMID

u v ­ v u u = v v2 = v x v2 f ( x) dx = ln f ( x) + c Parameetrilisel kujul antud funktsiooni tuletis, kus x = (t) ja y = (t) yt ( y x ) t y txt ­ y t xt y x = ja y x = y x = xt xt ( xt ) 3 Nr Diferentseerimise valemid Diferentseerimise valemid Integreerimise valemid Lihtfunktsioon Liitfunktsioon 1 (C)'=0 0 dx = c

Matemaatiline analüüs
109 allalaadimist
thumbnail
11
doc

Matemaatiline analüüs - konspekt II

32. Lokaalse ekstreemumi piisavad tingimused: tingimus I. Olgu x1 funktsiooni f kriitiline punkt. Kui läbides punkti x1 vasakult paremale funktsiooni tuletise märk muutub plussist miinuseks siis on funktsioonil selles punktis lokaalne maksimum. Kui aga läbides punkti x1 vasakult paremale funktsiooni tuletise märk muutub miinusest plussiks siis on funktsioonil selles punktis lokaalne miinimum. Kui funktsioonil eksisteerib teist järku tuletis siis saab lokaalsete ekstreemumite olemasolu kontrollida ka selle abil. Nimelt maksimumpunkti läbides vasakult paremale funktsiooni graafiku puutuja tõus väheneb. See tähendab et funktsiooni tuletis kahaneb. Funktsiooni tuletis kahaneb aga juhul kui teine tuletis on negatiivne. Seevastu miinimupunkti läbides puutuja tõus suureneb, seega tuletis kasvab. Tuletis kasvab aga juhul kui teine tuletis on positiivne. Järelikult kehtib järgmine väide: Lokaalse ekstreemumi piisav tingimus II

Matemaatiline analüüs
350 allalaadimist
thumbnail
273
pdf

Lembit Pallase materjalid

11. Funktsiooni pidevuse m~oiste. Tarvilik ja piisav tingimus funktsiooni pidevuseks 12. Elementaarfunktsioonide pidevus 13. L~oigul pidevate funktsioonide omadused 14. Funktsiooni katkevuspunktid 15. Funktsiooni tuletise m~oiste, selle geomeetriline ja mehhaaniline t~olgendus 1 16. Pidevus ja diferentseeruvus 17. M~onede p~ohiliste elementaarfunktsioonide tuletised 18. Diferentseerimisreeglid 19. P¨o¨ordfunktsiooni tuletis 20. Liitfunktsiooni tuletis 21. Logaritmiline diferentseerimine 22. Ilmutamata funktsiooni tuletis 23. Parameetrilisel kujul esitatud funktsiooni tuletis 24. Funktsiooni diferentsiaal 25. K~orgemat j¨arku tuletised 26. Joone puutuja ja normaali v~orrandid 27. Rolle'i teoreem 28. Cauchy teoreem 29. Lagrange'i teoreem 30. L'Hospitali reegel 31. L'Hospitali reegel teistel m¨aa¨ramatuse juhtudel 32. Taylori valem 33

Matemaatiline analüüs
808 allalaadimist
thumbnail
55
pdf

Matemaatiline analüüs II loengukonspekt

MATEMAATLINE ANALÜÜS II 1. KORDSED INTEGRAALID Kordame kõigepealt mõningaid teemasid Matemaatlise analüüsi I osast. 1.1 Kahe muutuja funktsioonid Kui Tasndi R 2 mingi piirkonna D igale punktile x, y D seatakse ühesel viisil vastavusse arv z, siis öeldakse, et piirkonnas D on määratud kahe muutuja funktsioon z f x, y . Piirkoda D nimetataksefunktsiooni f määramispiirkonnaks. See on mingi piirkond xy-tasandil. Näide 1. Poolsfääri z 1 x2 y 2 määramispiirkonnaks on ring x 2 y2 1. Funktsiooni z ln x y määramispiirkonnaks on pooltasand y x (sirgest y x ülespoole jääv tasandi osa: vaata joonist). Kahe muutja funktsioon ise esitab pinda xyz-ruumis (ruumis R 3 ). Näide 2

Matemaatiline analüüs II
69 allalaadimist
thumbnail
51
pdf

Matemaatilise analüüsi konspekt

Funktsiooni y=f(x) määramispiirkonnaks on kõigi nende argumendi x väärtuste hulk, mille korral funktsioon omab mõtet ja on lõpliku väärtusega. Funktsiooni väärtuste hulgaks nim. nende väärtuste hulka, mida funktsioon omandab, kui läbib kogu määramispiirkonna. Tingimused, mis peavad olema täidetud elementaarfunktsioonide kaudu esitatud reaalmuutuja funktsioonil: B ( x) 1) A( x) 0 A( x) 2) 2 x A( x) A( x) 0 3) logaA(x) A(x) >0 arcsin A( x) 4) -1 A( x) 1 arccos A( x) Funktsiooni y=f(x) pöördfunktsiooniks nim. f-ni y=g(x), mis igale funktsiooni f väärtusele y seab vastavusse need argumendi x väärtused, mille korral y=f(x) Olgu funktsioonid y=f(x) ja y=g(x), siis väärtus y on teisendatud argumendi x liitfunktsiooniks ehk kompositsiooniks y=f[g(x)]=f*g(x) © 2001 - Ivari Horm ([email protected]), Toomas Sarv 1 Funktsiooni piirväärtus

Matemaatiline analüüs
11 allalaadimist
thumbnail
51
pdf

Enno Paisu konspekt

Funktsiooni y=f(x) määramispiirkonnaks on kõigi nende argumendi x väärtuste hulk, mille korral funktsioon omab mõtet ja on lõpliku väärtusega. Funktsiooni väärtuste hulgaks nim. nende väärtuste hulka, mida funktsioon omandab, kui läbib kogu määramispiirkonna. Tingimused, mis peavad olema täidetud elementaarfunktsioonide kaudu esitatud reaalmuutuja funktsioonil: B ( x) 1) A( x) 0 A( x) 2) 2 x A( x) A( x) 0 3) logaA(x) A(x) >0 arcsin A( x) 4) -1 A( x) 1 arccos A( x) Funktsiooni y=f(x) pöördfunktsiooniks nim. f-ni y=g(x), mis igale funktsiooni f väärtusele y seab vastavusse need argumendi x väärtused, mille korral y=f(x) Olgu funktsioonid y=f(x) ja y=g(x), siis väärtus y on teisendatud argumendi x liitfunktsiooniks ehk kompositsiooniks y=f[g(x)]=f*g(x) © 2001 - Ivari Horm ([email protected]), Toomas Sarv 1 Funktsiooni piirväärtus

Matemaatiline analüüs
179 allalaadimist
thumbnail
142
pdf

Matemaatilise analüüsi konspekt TTÜ's

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.8 L~opmatult kahanevate ja l~opmatult kasvavate suuruste v~ordlemine. 43 2.9 Funktsiooni pidevus. Katkevuspunktide liigitus. . . . . . . . . . . 45 ¨ 2.10 Uhepoolne pidevus. Pidevus hulkadel. Elementaarfunktsioonide pidevus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.11 L~oigul pidevate funktsioonide omadusi. . . . . . . . . . . . . . . . 52 3 Tuletis ja diferentsiaal 57 3.1 Tuletise, diferentseeruva funktsiooni ja diferentsiaali m~oisted. . . 57 3.2 N¨aiteid tuletiste kohta rakendustes. . . . . . . . . . . . . . . . . . 60 3.3 Tuletiste arvutamise p~ohireeglid . . . . . . . . . . . . . . . . . . . 61 3.4 Ilmutamata funktsiooni, p¨o¨ordfunktsiooni ja parameetrilise funk- tsiooni diferentseerimine. . . . . . . . . . . . . . . . . . . . . . . . 62

Matemaatiline analüüs
47 allalaadimist
thumbnail
13
doc

Matemaatiline analüüs 1 kordaisküsimuste vastused

Paaridf-n *Def. Y=f(x) on paarisf-n juhul kui f(-x)=f(x) x MP graafik sum y telje suhtes, Nt y=x 2 =(-x)2 3. Paaritu f- n- sel korral paaritu kui f(-x)= -f(x), x MP, graafik sümm 0-punkti suhtes 4.Perioodiline f-n-parajasti siis, kui leidub niisugune reaalarv t, et tekib võrdsus iga MP punkti puhul. Märkus: kui f-n perioodiline=> t on lõpmata palju=> min t =T ­periood=> näit ting f-nil t>0 4. Liitfunktsioon Funkts, mille argumendiks ei ole sõltumatu muutuja, vaid tema mingi funktsioon, nim liitfunkt-niks sõltumatu muutuja suhtes y=f(u) u=u(x), Märkus: sisalduvus võib olla mitmekordne 5. Põhilised elementaarfunkts. 1)astmefunkts y=xa; a IR (nii murrulised, kui negatiivsed) 2)eksponentf-n y=ax, a 1, astmef-ni puhul on muutuja konstantses astmes , eksponentf-ni puhul on muutuja muutuvas astmes 3)logaritmf-n y=log ax, a>0, a 1 4)trig. F- nid y=sinx; cosx;tanx;cotx 5)arkus f-nid y=arcsinx;... NB 2ja 3 ning 4 ja 5 on pöördf-nid

Kõrgem matemaatika
147 allalaadimist
thumbnail
142
pdf

Matemaatiline analüüs I

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.8 L~opmatult kahanevate ja l~opmatult kasvavate suuruste v~ordlemine. 43 2.9 Funktsiooni pidevus. Katkevuspunktide liigitus. . . . . . . . . . . 45 ¨ 2.10 Uhepoolne pidevus. Pidevus hulkadel. Elementaarfunktsioonide pidevus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.11 L~oigul pidevate funktsioonide omadusi. . . . . . . . . . . . . . . . 52 3 Tuletis ja diferentsiaal 57 3.1 Tuletise, diferentseeruva funktsiooni ja diferentsiaali m~oisted. . . 57 3.2 N¨aiteid tuletiste kohta rakendustes. . . . . . . . . . . . . . . . . . 60 3.3 Tuletiste arvutamise p~ohireeglid . . . . . . . . . . . . . . . . . . . 61 3.4 Ilmutamata funktsiooni, p¨o¨ordfunktsiooni ja parameetrilise funk- tsiooni diferentseerimine. . . . . . . . . . . . . . . . . . . . . . . . 62

Matemaatika
42 allalaadimist
thumbnail
54
doc

Valemid ja mõisted

1 + cos = 2 cos 2 2 1 - cos = 2sin 2 2 3.12 Korrutise teisendamine summaks 1 sin sin = cos ( - ) - cos ( + ) 2 1 cos cos = cos ( - ) + cos ( + ) 2 1 sin cos = sin ( - ) + sin ( + ) 2 tan + tan tan tan = cot + cot 3.13 Trigonomeetriliste funktsioonide pöördfunktsioonid (arkusfunktsioonid) 1. arcsin m on absoluutväärtuselt vähim nurk, mille siinus on m: sin ( arcsin m ) = m , kusjuures - arcsin m , 2 2 -1 m 1 . 2. arccos m on vähim mittenegatiivne nurk, mille koosinus on m: cos ( arccos m ) = m , kusjuures

Matemaatika
1099 allalaadimist
thumbnail
2
docx

Matemaatiline analüüs I abivalemid

∞ , kui m arcsin x )' = ∫ 2 2 =ln |x + √ m=n kuix2 ± α 2 |+C

Matemaatiline analüüs 1
8 allalaadimist
thumbnail
6
pdf

Matemaatilised meetodid loodusteadustes.

2) y = = = 2x3 + 2 (2x3 + 2)2 (2e2x (2x) + 1)(2x3 + 2) - (2e2x + x)6x2 (4e2x + 1)(2x3 + 2) - (2e2x + x)6x2 = = . (2x3 + 2)2 (2x3 + 2)2 3. Leida tuletis y (x) funktsioonist y = sin2 (3x) ning tuletise v¨a¨artus kohal x = /4. Kas funktsioon sellel kohal kasvab v~oi kahaneb? (2p) Lahendus. y= ((sin(3x))2 ) = 2 sin(3x) · (sin(3x)) = 2 sin(3x) · cos(3x) · (3x) = 6 sin(3x) cos(3x), 3 3 2 2 y (/4) = 6 sin cos =6 - = -3. 4 4 2 2

Looduskaitsebioloogia
50 allalaadimist
thumbnail
108
doc

MATEMAATIKA TÄIENDÕPE: Valemid

2 1 cos   cos    cos       cos      2 1 sin   cos    sin       sin      2 tan   tan  tan   tan   cot   cot  3.13 Trigonomeetriliste funktsioonide pöördfunktsioonid (arkusfunktsioonid) 1. arcsin m on absoluutväärtuselt vähim nurk, mille siinus on m: sin  arcsin m   m , kusjuures     arcsin m  , 2 2 1  m  1 . 2. arccos m on vähim mittenegatiivne nurk, mille koosinus on m:

Algebra I
61 allalaadimist
thumbnail
9
doc

Lineaarsete algebraliste võrrandite süsteem

Kehtib a ×b = - b × a ( ) a × b + c = a ×b + a ×c . Vektorkorrutise moodul a ×b = a b sin Paremakäelises koordinaatsüsteemis peab kehtima k =i × j . Funktsiooni tuletis Olgu ühe muutuja x funktsioon y = f ( x ) . Funktsiooni muut argumendi muudu x korral 2 MLF 1121 Geofüüsikaline hüdrodünaamika (Matemaatika ülevaade I) Jüri Elken y = f ( x ) = f = f ( x + x ) - f ( x ) . Tuletis (erinevad tähistused) dy df ( x ) df f ( x + x ) - f ( x )

Matemaatika
74 allalaadimist
thumbnail
19
doc

Nimetu

1 ÜHE MUUTUJA FUNKTSIOON. TEMA MÄÄRAMISPIIRKOND DEFINITSIOON 1. Kui muutuja x igale väärtusele hulgast X on mingi eeskirja f abil vastavusse seatud lõplik reaalarv y, siis öeldakse, et hulgal X on määratud FUNKTSIOON ja seda tähistatakse y = f(x). DEFINITSIOON 2. Muutuja x väärtuste hulka, mille puhul f(x) väärtus on lõplik, nimetatakse funktsiooni y = f(x) MÄÄRAMISPIIRKONNAKS. X = { x R; f(x) väärtus on lõplik}. PÕHILISED ELEMENTAARFUNKTSIOONID: 1. Astmefunktsioonid: y = x , Q; 2. Eksponentfunktsioonid: y = ax, a > 0, a 1; 3. Logaritmfunktsioonid: y = loga x, a > 0, a 1; 4. Trigonomeetrilised funktsioonid: y = sin x, y = cos x, y = tan x, y = cot x; 5. Arkusfunktsioonid: y = arcsin x, y = arccos x,

177 allalaadimist
thumbnail
4
doc

Matemaatiline analüüs

Muutuja vahetus kahekordses integraalis x = x(u; v) f ( x, y )dxdy 1)need on ühesed; 2)võrrandisüst. On üheselt avaldatav u ja v suhtes; 3)f-nid y = y(u; v) D peavad olema pidevad; 4)peavad olema pidevad osatuletised mõlema muutuja järgi. (joon) f ( x; y ) = f [ x (u; v ); y (u; v )] = F (u; v ) * f ( x; y ) dxdy = F (u; v) J dudv D xu xv J = Jacobi determinant e jakobiaan. yu yv Kahekordne integraal polaarkoordinaatides x = cos

Matemaatiline analüüs
341 allalaadimist
thumbnail
11
doc

Määratud integraal

mx P Mx võrdus esineb vaid siis, kui y = f ( x ) = const P Seega m M x Kui x 0 , lähenevad nii m kui ka M funktsiooni väärtusele kohal x lim m = lim M = f ( x ) x0 x 0 P Järelikult on ka lim = f ( x) ning tuletise definitsiooni meenutades P( x ) = f ( x ) (1) x 0 x Leidsime, et pindfunktsiooni tuletis võrdub pindala piirava kõvera lõppordinaadiga. 1 KÕVERJOONSE TRAPETSI PINDALA Kõverjoonse trapetsi abBA pindala S abBA = P ( b ) ehk pindala võrdub pindfunktsiooni väärtusega kohal x =b. Valem (1) näitab,et pindfunktsioon on üks funktsiooni y = f ( x ) algfunktsioonidest. Olgu y = F ( x ) mingi algfunktsioon funktsioonile y = f ( x )

Kõrgem matemaatika
181 allalaadimist
thumbnail
32
doc

Matemaatika I küsimused ja mõisted vastustega

ühepoolsed piirväärtused f ( a+) = lim f(x); x a+ ja f( a- ) = lim f(x); x a - nimetatakse 1. liiki katkevuspunktiks. ( hüppekoht, kõrvaldatav katkevuskoht, ................................................... 3 17. Teist liiki katkevuspunkt - arvu a nimetatakse funktsiooni y = f(x) teist liiki katkevuspunktiks, kui lim f(x); x a - on lõpmatu või ei eksisteeri ............................................ 4 20. Diferentseeruv funktsioon - kui funktsioonil y = f(x) on tuletis punktis x = x0, siis ütleme, et funktsioon on diferentseeruv punktis x0. Kui funktsioon on aga diferentseeruv mingi piirkonna igas punktis, öeldakse, et funktsioon on diferentseeruv selles piirkonnas. ..................................... 4 1. Arvuhulgad: naturaal-, täis-, ratsionaal-, reaal- ja kompleksarvud. Nende omadused. ...............6 2. Reaalarvu absoluutväärtus, absoluutväärtuse omadused. ............................................................6 Absoluutväärtuse omadused..

Matemaatika
118 allalaadimist
thumbnail
11
pdf

Määratud integraal

mx S Mx võrdus esineb vaid siis, kui y = f ( x ) = const S Seega m M x Kui x 0 , lähenevad nii m kui ka M funktsiooni väärtusele kohal x lim m = lim M = f ( x ) x0 x 0 S Järelikult on ka lim = f ( x) ning tuletise definitsiooni meenutades S ' ( x ) = f ( x ) (1) x 0 x Leidsime, et pindfunktsiooni tuletis võrdub pindala piirava kõvera lõppordinaadiga. 1 KÕVERJOONSE TRAPETSI PINDALA Kõverjoonse trapetsi abBA pindala S abBA = S ( b ) ehk pindala võrdub pindfunktsiooni väärtusega kohal x =b. Valem (1) näitab,et pindfunktsioon on üks funktsiooni y = f ( x ) algfunktsioonidest. Olgu y = F ( x ) mingi algfunktsioon funktsioonile y = f ( x )

Matemaatika
66 allalaadimist
thumbnail
156
pdf

Kõrgem matemaatika

. . . . . . . . . . . . . . . . 40 4.5 Tähtsad piirväärtused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.6 Pidevad funktsioonid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.7 Funktsiooni katkevusviise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.8 Pidevate funktsioonide omadused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5 Funktsiooni tuletis ja diferentsiaal 47 5.1 Keskmine kiirus ja hetkkiirus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.2 Tuletise definitsioon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.3 Põhiliste elementaarfunktsioonide tuletised . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.4 Diferentseerimise reeglid . . . . . . . . . . . . . . .

Kõrgem matemaatika
94 allalaadimist
thumbnail
4
pdf

Kordamisülesanded matemaatikas

x3 - 5x2 + 3x + 9 lim . x3 x3 - 8x2 + 21x - 18 4. Arvutada piirv¨aa¨rtus l'Hospitali reeglit kasutades: (1 - x)2 lim . x1 1 - sin x 2 5. Arvutada piirv¨aa¨rtus l'Hospitali reeglit kasutades: lim arcsin x cot x . x0 6. Arvutada piirv¨aa¨rtus l'Hospitali reeglit kasutades: x 1 lim - . x1 x - 1 ln x 7. Leida funktsiooni f (x) = 6 + 8x3 - x4 kasvamis- ja kahanemispiirkonnad ning lokaalsed ekstreemumid. 8. Leida funktsiooni 3

Matemaatiline analüüs I
34 allalaadimist
thumbnail
5
doc

Matemaatilise analüüsi 2.kollokviumi

Pideva mitmemuutuja Kui funktsiooni z=f(x,y) on diferentseeruv kohal (x,y), siis funktsioon f on pidev sellel kohal. funktsiooni definitsioon. Kahemuutuja funktsiooni pidevuse geomeetriline sisu. Funktsioon z=f(x,y) on diferentseeruv kohal (x,y) siis, kui funktsioonil z=f(x,y) on pidevad osatuletised fx ja fy kohal (x,y). Kui hulga Rn igale punktile P(x1, . . . , xn) on vastavusse seatud muutuja u R kindel väärtus, siis öeldakse, et hulgal on Kui funktsiooni f(x,y) osatuletised fx(x,y) ja fy(x,y) on diferentseeruvad kohal (x,y), siis fxy = fyx kohal (x,y). defineeritud n-muutuja (skalaarväärtusega) funktsioon. Suurust df:=fx(x,y)dx + fy(x,y)dy, kus dx:= x ja dy:= y, nimetatakse funktsiooni f(x,y) täisdiferentsiaaliks.

Matemaatiline analüüs 2
37 allalaadimist
thumbnail
18
pdf

Määratud integraal

5 M¨ a¨ aratud integraal 5.1 M¨ a¨ aratud integraali mo ~iste Olgu funktsioon y = f (x) m¨a¨aratud l~oigul [a; b]. Jaotame l~oigu [a; b] suvalisel viisil punktidega x1 , x2 , ... xn-1 n osal~oiguks, kusjuures a = x0 < x1 < x2 < . . . < xk-1 < xk < . . . < xn = b. Tekkinud osal~oigud on [xk-1 ; xk ], kus k = 1, 2, . . . , n. T¨ahistagu xk = xk - xk-1 k-nda osal~oigu pikkust.

Matemaatiline analüüs 2
176 allalaadimist
thumbnail
21
pdf

Funktsiooni tuletis (jätk) loeng 6

Funktsiooni tuletis (jätk) - + sin - sin = 2 sin cos 2 2 Funktsiooni y = sin x tuletis Teoreem: Funktsiooni y = sin x tuletis on cos x. x + x - x x + x + x Tõestus: y = sin( x + x) - sin x = 2 sin cos 2 2 x x = 2 sin cos x + 2 2 x x x 2 sin cos x + sin y 2 2 2 cos x + x

Matemaatika
70 allalaadimist
thumbnail
14
pdf

Matemaatiline analüüs II

n=1: R1={P(x1) | x1 R} geom. sirge n=2: R2={P(x1,x2) | x1,x2 R} geom. tasand n=3: R3={P(x1,x2,x3) | x1,x2,x3 R} geom. ruum Punkt A on piirkonna D sisepunkt, sel korral kui tal leidub ümbrus, mis sisaldub piirkonnas D. Punkt A on piirkonna D rajapunkt sel korral kui iga tema ümbrus sisaldab nii piirkonna D kui ka piirkonda mittekuuluvaid punkte. Piirkond D on lahtine, kui ta koosneb sisepunktidest. Piirkond D on kinnine, kui ta koosneb nii sise- kui ka rajapunktidest. Mitme muutuja funktsiooni mõiste Def: nMF f:RnR:P(x1,...,xn) Rn a w=f(P) f(x1,...,xn) R Kujutlus, mis seab n-mõõtmelise ruumi punktidele P vastavusse lõpliku reaalarvu w=f(P), nim n- muutuja funktsiooniks. Geom ­ hüperpind n+1-mõõtmelises ruumis. Füüsikaliselt on nMF skalaarväli. Def: funktsiooni w=f(P), P Rn MP-ks nim nende punktide hulka, mille puhul funktsiooni väärtus on lõplik. MP={P(x1,...,xn) Rn | w=f(P) f(x1,...,xn) < } Rn

Matemaatiline analüüs 2
336 allalaadimist
thumbnail
1
pdf

Diferentsiaal- ja integraalarvutuse põhivalemid

tan x' = 2 1 cos x cos 2 x dx=tan xC 1 cot x '=- 2 1 sin x sin2 x dx=-cot xC Arkusfunktsioonid 1 1 arcsin x ' = dx=arcsin xC 1-x 2 1-x 2 1 1 arctan x' = 1x 2 1x 2 dx=arctan xC Konstantne tegur kf x ' =kf ' x kf x dx=k f x dx

Matemaatiline analüüs
384 allalaadimist
thumbnail
35
pdf

Mitmemuutuja funktsioonid

MITME MUUTUJA FUNKTSIOON 1. Punkti ümbrus. Kinnine ja lahtine piirkond. Mitme muutuja funktsioon ja selle määramispiirkond. Def. 1.1. ( 0 0 )0 Punkti P x1 , x 2 ,..., x n ümbruseks n-mõõtmelises ruumis R n nimetatakse punktide hulka { U ( P ) , mis rahuldavad tingimust U ( P ) = Q( x1 , x 2 ,..., x3 ) R n ( P, Q ) < , kus } ( P, Q ) = PQ = (x1 - x10 ) + (x 2

Matemaatiline analüüs 2
240 allalaadimist
thumbnail
8
doc

Kordamisküsimused aines "Matemaatiline analüüs I"

· Algebralised funktsioonid on funktsioonid, mis saadakse lõpliku arvu algebraliste tehte rakendamise teel. a. Täisratsionaalsed funktsioonid ehk astmefunktsioonid b. Murdratsionaalsed funktsioonid ehk kahe täisratsionaalse funktsiooni jagatis c. Irratsionaalsed funktsioonid ( sisaldavad lisaks eelnevale veel juurimist) d. Mittealgebralised funktsioonid Liitfunktsioon- on funktsioon, kus sõltuv muutuja y sõltub argumendist x mitme funktsiooni vaheldusel. Kui y=f(z) ja z=g(x) , seega saame liitfunktsiooni y=f(g(x)) . Liitfunktsioonil võib olla ka enam kui kaks koostisosa ja seega enam kui üks vahepealne muutuja. Pöördfunktsioon- pöördfunktsiooni saame, kui võtame algse funktsiooni , avaldame sealt x ja seejärel vahetame x ja y ära. Näiteks : y=2x ; x=0,5y ; y=0,5x , seega y=2x pöördfunktsioon on y=0,5x. Funktsiooni y = f(x) pöördfunktsiooniks nimetatakse funktsiooni y =( x )

Matemaatika analüüs I
159 allalaadimist
thumbnail
7
doc

Konspekt

x4 Näide. Funktsiooni y= x 3 algfunktsiooniks on funktsioon y = , üldiselt iga 4 x4 funktsioon kujul y = + C , kus C on suvaline konstant. 4 Üldavaldus. Funktsiooni f kõik algfunktsioonid F avalduvad kujul F(x) +C, kus F on funktsiooni f mingi algfunktsioon, C ­ suvaline konstant. Definitsioon 17. Funktsiooni f kõikide algfunktsioonide üldavaldist F(x) +C, kus F on funktsiooni f mingi algfunktsioon, C ­ suvaline konstant, nimetatakse funktsiooni f määramata integraaliks. Funktsiooni f määramata integraal tähistatakse sümboliga f ( x ) dx. Seega f ( x)dx = F ( x) + C F ( x) = f ( x). Integraal on funktsiooni piirväärtuste summa. 2. Esitada ja tõestada määramata integraali f ( x ) dx

Matemaatiline analüüs
87 allalaadimist
thumbnail
32
pdf

Matemaatiline analüüs II konspekt - MITME MUUTUJA FUNKTSIOONID

Kordamine eksamiks aines matemaatiline analüüs II (2004/2005 õa kevad) §1. MITME MUUTUJA FUNKTSIOONID 1. Ruum R m , hulgad selles ruumis Def. Kõigi m reaalarvust koosnevate järjestatud süsteemide P = ( x1 ,..., x m ) hulka nimetatakse m-mõõtmeliseks ruumiks. Def. Kui m-mõõtmelises ruumis defineeritakse süsteemide P = ( x1 ,..., x m ) ja Q = ( y1 ,..., y m ) m vaheline kaugus d (P, Q ) valemiga d (P, Q ) = (x - y i ) , siis nimetatakse seda ruumi

Matemaatiline analüüs II
187 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun