Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Lineaar algebra teooria kokkuvõte - sarnased materjalid

võr, vektor, maatriks, lahend, kompleksarvu, võrd, vektorit, korruta, juur, veeru, deti, reaal, astak, miinor, deta, kompleksarvud, vektorruum, cosa, teoreem, miinori, imaginaar, vektorruumi, kusjuures, regulaarne, reaalarv, moodul, võrrandidr, determinant, pöördmaatriks, parajasti, veerg, nullid, defi, reaalarvu, vektorid, liitmise, elips
thumbnail
2
doc

Lineaar algebra teooria2

Kompleksarvud Kompleksarvu mõiste. Kompleksarve on kombeks tähistada väikese tähega z. Kompleksarvudel on mitmeid esitusviise ehk kujusid. Kõige levinum on kompleksarvu algebraline kuju. Def Kompleksarvuks (algebralisel kujul) nimetatakse arvu z = a + ib, kus a ja b on reaalarvud ja i on imaginaar ühik. Imaginaarühik, mida tähistatakse i, defi'kse võrdusega i2 = -1.Kõigi kompleksarvude hulka tähistatakse C. Def Kompleksarvu z = a + ib C korral nim arvu a R selle kompleksarvu reaalosax ja arvu b R nim selle kompleksarvu imaginaarosaks. Kaks kompleksarvu on võrdsed parajasti siis, kui 1) on võrdsed nende reaalosad, 2) on võrdsed nende imaginaarosad. Algebraline kuju on kompleksarvu kujudest kõige levinum. Kuid on ka teisi esitusviise. Kompleksarve nim arvudex, sest nendega saab sooritada aritmeetilisi tehteid: liitmist, lahutamist, korrutamist, jagamist. Komar liitmine ja lahutamine on kõige otstarbekam teha algebralisel kujul. Def

Lineaaralgebra
478 allalaadimist
thumbnail
81
pdf

Kõrgem matemaatika / lineaaralgebra

Kõrgema matemaatika kordamisküsimused 1. Maatriksi definitsioon. Maatriksi elemendid. Lineaarsed tehted maatriksitega (liitmine ja skalaariga korrutamine). Nullmaatriks. Transponeeritud maatriks 2. Maatriksite korrutise definitsioon. Korrutamise omadused ja seosed lineaarsete tehete ning korrutamise vahel. Ühikmaatriks. 3. Teist ja kolmandat järku determinandid. 4. Permutatsiooni definitsioon. Inversiooni definitsioon. n-järku determinandi definitsioon. Determinandi põhiomadused 5. Maatriksi elemendi minor. Alamdeterminant. Determinandi arendus rea ja veeru järgi. Determinantide teooria põhivalem. 6. Regulaarse maatriksi mõiste

Algebra I
198 allalaadimist
thumbnail
104
pdf

Konspekt

. . . . an1 an2 . . . ann an1 an2 . . . ann Determinandi det A ridade ja veergude all m~oeldakse maatriksi A ustkriipse | · | nimetame determinandi m¨arkideks. ridu ja veerge. P¨ I. Determinandid 3 1.8 Miinor ja alamdeterminant Maatriksi A = (aij ) elemendi aij miinoriks Mij nimetatakse de- terminanti, mille saame maatriksi A determinandist i-nda rea ja j- inda veeru eemaldamisel. Elemendi aij alamdeterminandiks ehk al- aiendiks nimetatakse arvu Aij := (-1)i+j Mij . Suurust gebraliseks t¨ (-1)i+j nimetame elemendi aij ja alamdeterminandi Aij m¨ argi- teguriks. 1.9 Determinandi (induktiivne) definitsioon arku determinandi (n - 1)-j¨arku determinantide Defineerime n-j¨ kaudu arendusvalemiga a11 a12 ... a1n a21 a22 ... a2n det A := . .. .. .. .

Lineaaralgebra
510 allalaadimist
thumbnail
24
rtf

Lineaaralgebra eksam

1. Kompleksarv kui reaalarvude paar. Tehted kompleksarvudega. Tehete omadused. Kompleksarvu algebraline kuju. Tuletatavad tehted ja nende omadused. Kompleksarvuks nimetatakse reaalarvude paari (x,y). C = {(x;y) | x, y R} Tehted kompleksarvudega: z1 = (x1; y1) C; z2 = (x2; y2) C 1. liitmine: z1 + z2 = (x1 + x2; y1 + y2) 2. korrutamine: z1 * z2 = (x1x2 - y1y2; x1y2 + x2y1) Kompleksarvudega tehete omadused 1. liitmine on kommutatiivne, st z1 + z2 = z2 + z1 z1, z2 C korral 2. liitmine on assotsiatiivne, st (z1 + z2) + z3 = z1 + (z2 + z3) z1, z2, z3 C korral 3

Lineaaralgebra
197 allalaadimist
thumbnail
26
docx

Lineaaralgebra eksami kordamisküsimused vastused

d= ( x 2−x 1 ) + ( y 2− y 1 ) + ( z 2 + z 1) 2 3. Vektori mõiste-Vektor on suunatud lõik millel on kindel algus- ja lõpp-punkt. 4. Nullvektor-Vektorit, mille pikkus on null, nimetatakse nullvektoriks ja tähistatakse sümboliga . Nullvektori suund on määramata. 5. Ühikvektor- Kui vektori pikkus on 1 6. vektorite liitmine-rööpkülikureegel: Vektorite a ja b summaks nimetatakse niisugust vektorit c, mis väljub nende ühisest alguspunktist ja on niisuguse rööpküliku diagonaal, mille külgedeks on liidetavad vektorid. Kolmnurga reegel-vektorite liitmisel viiakse teise liidetava alguspunkt esimese liidetava lõpp-punkti. Vektorite a ja b summaks on vektor mis kulgeb esimese liidetava alguspunktist teise liidetava lõpp-punkti. 7. vektorite lahutamine- Vektorite a ja b vaheks nimetatakse vektorit d, millel on omadus b+d=a. Kahe vektori vahe leidmiseks viikse nad ühisesse

Matemaatiline analüüs 1
124 allalaadimist
thumbnail
5
docx

Lineaaralgebra Eksami küsimuste vastused

(1,2,3....n-1) 4. Geomeetrilised vektorid,lineaartehted ja nende omadused. Geomeetrilised vektorid on suunatud lõigud,a-algus punk,b-lõpp punkt( või ) on võrdsed kui need on,samasuunalised ja ühepikused.ruumis võib olla mis tahes punkt iga vektori ja p.A-le leidub p.B .kui vektori alg ja lõpp punk langevad kokku siis see on null-vektor.vektorite + = . lineaartehted­ on vektorite liitmine ja skalaar korrutmine omadused ­ , , (null vektor olemas olu), (vastand vektori olemas olu), , 5. Aritmeetilised vektorid lineaartehted ja skalaarkorrutis ja nende omadused. Aritmeetilised vektorid n-mõõtmeline aritm.vektor on n arvu(a1,a2,a3....an)kindlas jäjekorras.tähistatakse (.kõigi n-mõõtmelise vektorite this on . Lineaartehted kui p =(b1,b2,b3,...bn) ja CR. korrutis ) Omadused iga ­ , , leidub ,et null vektor, iga leidub vastand vektor ka , , (ab)=a() , 1* Skalaarkorrutis on arv ­

Lineaaralgebra
950 allalaadimist
thumbnail
9
doc

Lineaaralgebra

Lineaaralgebra I kontrolltöö teooriaküsimused 1. Kompleksarvu mõiste, imaginaarühik, kaaskompleksarv, kompleksarvude võrdsus ja nulliga võrdumise tingimus. Kompleksarvu moodul, argument ja trigonomeetriline kuju. Kompleksarvuks z nimetatakse avaldist z = a + bi , (1) kus a ja b on reaalarvud ja i on niinimetatud imaginaarühik, mis on määratud võrdustega i = -1 või i 2 = -1 ; Kaht kompleksarvu z = a + bi ja z = a - bi , mis erinevad ainult imaginaarosa märgi poolest, nimetatakse kaaskompleksarvudeks. Kokkuleppe põhjal

Lineaaralgebra
920 allalaadimist
thumbnail
28
pdf

Lineaaralgebra ja analüütiline geomeetria konspekt

2016 aasta sügis) Ristkoordinaadid. Kui ruumis on antud ristkoordinaadisüsteem, siis ruumi iga punkt P on üheselt määrastud ristkoordinaatidega x, y, z, kus x on punkti P ristprojektsioon abstsissteljele, y on punkti P ristprojektsioon ordinaatteljele ja z on punkti P ristprojektsioon aplikaateljele. Kirjutame P(x, y, z). Kahe punkti vaheline kaugus. Kui P1(x1, y1, z1), P2(x2, y2, z2) on ruumi punktid, siis kaugus d punktide P1 ja P2 vahel on määratud valemiga Vektori mõiste Vektor on suunatud lõik alguspunktiga punktis A ja lõpp-punktiga punktis B. Nullvektor Eukleidilises ruumis (näiteks tasandil) on nullvektoriks määramata suunaga vektor, mille pikkus on null. Ühikvektor Kui vektori pikkus on 1, siis teda nimetatakse ühikvektoriks. Vektorite liitmine ja lahutamine Lahutamine toimub sama põhimõtte järgi. Reaalarvu ja vektori korrutis. Vektori pikkus Vektori pikkuseks loetakse sellele vektorile vastava sirglõigu AB pikkust

Algebra ja analüütiline...
105 allalaadimist
thumbnail
13
doc

Kõrgema matemaatika eksam

1. Maatriksi mõiste, järk, tähistused, liigid. Maatriks on ristkülikukujuline arvude tabel, milles on m-rida ja n-veergu ja mis on ümbritsetud ümarsulgudega. Maatriksit tähistatakse suure tähega: Maatriksi järk tähistab maatriksi mõõtmeid: A on m*n järku maatriks. Liigid: · Ruutmaatriks (m=n) · Diagonaalmaatriks ­ ruutmaatriks, mille peadiagonaalis arvud, muud elemendid 0-d. · Ühikmaatriks ­ diagonaalmaatriksi erijuht. Peadiagonaali elemendid 1-d. Täh E. · Nullmaatriks ­ kõik nullid. Täh . 2. Tehted maatriksitega (korrutamine arvuga, liitmine, lahutamine, korrutamine). · Korrutamine arvuga: korrutades maatriksit reaalarvuga, muutuvad kõik elemendid, selle arvu korra suuremaks.

Kõrgem matemaatika
356 allalaadimist
thumbnail
25
doc

Algebra ja geomeetria kordamine

MAATRIKS: Maatriks ­ nimetatakse ümarsulgudesse paigutatud reaalarvude tabelit, milles on eristatavad read ja veerud. Maatriksi mõõtmed ­ Maatriksit, milles on m rida ja n veergu nimetatakse täpsemalt (m,n)- maatriksiks ning arvupaari (m,n) selle maatriksi mõõtmeteks. Maatriksi järk ­ Omadus, mis esineb ainult ruutmaatriksil: Näiteks Mat(n,n) nim. n-järku maatriksiks. Maatriksi elemendid ­nimetatakse reaalarve, milledest maatriks koosneb. Maatriksi ja maatriksite hulga tähistused ­ Maatrikseid tähistatakse tavaliselt suurte ladina tähtedega: A, B,....X, Y, Z. Maatriksite elemente tähistatakse vastavate väikeste ladina tähtedega, mis võivad olla varustatud ka indeksitega: a, b, c, jne. Kõigi (kõikvõimalike mõõtmetega) maatriksite hulka tähistame edaspidi Mat abil ning kõigi (m, n)-maatriksite hulka tähistame edaspidi Mat(m, n) abil. Ruutmaatriks ­maatriks, mille ridade arv on võrdne veergude arvuga, s.t

Algebra ja geomeetria
62 allalaadimist
thumbnail
9
docx

Lineaaralgebra

k.arvuks nim. Arvufoori (a,b) kus a,bR. esitatakse z=a+bi (a-reaalosa,b-imaginaar osa,i- imaginaar ühik). Põhimõiste olgu z1=a1+b1i,z2=a2+b2i z1=z2 kui a1= a2 ja b1=b2, z=0 kui a=0 ja b=0,k- arvu z1=a1-b1i nim.kaas k-arvuks z1=a1+b1i. Arvutamine z1+z2= (a1+a2)+(b1+b2)i, z1-z2= (a1-a2)+(b1-b2), z1*z2= z 1 ( a1 +b 1 i ) (a 2+b 2 i) (a1+b1i)*(a2+b2), = z 2 ( a2 +b 2 i ) (a 2+b 2 i) 2) Kompleksarvu trigonomeetriline kuju ja tehted trigonomeetrilisel kujul. geomeetriline kujutamine k-arv/reaalarvu paar (a,b).saab k-arvu z=a+bi kujutada xy tasandil kus kordinaadid a-reaal osa, b- imaginaar osa ja vastavalt X-telg k-arvu reaal telg ja Y- telg ­ imaginaar telg.XY tasandi iga punkt M(x,y) ongi z=x+iy trigonomeetriline kuju tähistame nurk X-teljel ja vektori OA pikkus r ,siis a=rcos ja

Matemaatiline analüüs 2
32 allalaadimist
thumbnail
8
doc

Kõrgema matemaatika kordamisküsimused ja vastused

1. Maatriksi mõiste, järk, tähistused, liigid. Maatriks ­ ristkülikukujuline arvudega tabel, milles on m-rida ja n-veergu. Tähistused: (maatriksit tähistatakse suure tähega) a11 a12 ... a1n a 21 a 22 ... a2n i =1,2,..., m = A( aij ), ... ... ... ... j =1,2,..., n a m1 am2 ... a mn Maatriksi järk ­ tähistab maatriksi môôtmeid; A on m*n järku maatriks. Maatriksi liigid: 1) Ruutmaatriks: m=n; 2) Diagonaalmaatriks: a11, a22, amm - peadiagonaal (diagonaalil ei ole 0; muud elemendid 0-d); 3) Ühikmaatriks (diagonaalmaatriksi erijuht): a11 = a22 ... = amm = 1; (Täh. E); 4) Nullmaatriks: aij = 0, iga i ja j korral; (Täh ). 2. Tehted maatriksitega (korrutamine arvuga, liitmine, lahutamine, korrutamine). 1) Korrutamine arvuga: A=(aij), kR; kA=C; C=(cij), kus cij = kaij. 2) Maatriksite liitmine: (m*n) ­ ma. A, (p*q) ­ ma. B ja m=p, n=q

Matemaatika
241 allalaadimist
thumbnail
156
pdf

Kõrgem matemaatika

. . . . . . . . . . . . . . . . . . . . 135 14.9 Nurk sirge ja tasandi vahel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 15 Kompleksarvud. Algebraline ja trigonomeetriline kuju 137 15.1 Sissejuhatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 15.2 Kompleksarvud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 15.3 Kompleksarvu algebraline kuju . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 15.4 Tehted kompleksarvudega . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 15.5 Kompleksarvu trigonomeetriline kuju . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 15.6 Siinus ja koosinus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 15.7 Tehted trigonomeetrilisel kujul antud kompleksarvudega . . . . . . . .

Kõrgem matemaatika
94 allalaadimist
thumbnail
5
doc

algebra konspekt

Joonte parameetrilised võrrandid Joone parameetrilisteks võrranditeks ruumis nim võrandeid kujul x=x(t) y=y(t) z=z(t) kui esimene võrrand esitab x-i t-funktsioonina, teine võrrand esitab y-i ja kolmas z-i muutuja funktsioonina. Muutujat t nim parametriks. Tasandil nim joone parameetrilisteks võrranditeks võrrandeid x=x(t) y=y(t) Sirge parameetrilised võrrandid Sirge on täielikult määratud kui on teada nullist erinev sirgega paralleelne vektor, nn sirge sihivektor s ja üks punkt M1 sirgel. M on meelevaldne punkt sirgel, siis OM1=r1 ja OM=r. Punktid M1 ja M määravad vektori M1M=r-r1. See vektor on paralleelne sihivektoriga. Võrrand r-r1=st on sirge parameetriline võrrand vektorkujul. Võrrandit y= kx+b nim sirge võrrandiks tõusu ja algordinaadi järgi. Siin arv k on sirge tõus ehk x-telje positiivse suuna ja sirge vahelise nurga tangens. Arvu b nim sirge algordinaadiks.See on sirge ja y-telje lõikepunkti ordinaat.

Algebra ja Analüütiline...
131 allalaadimist
thumbnail
8
doc

Konspekt eksamiks

(0;a0) a1-tõus c) ratsionaalf. N murrud d) mittealgebralised f. n juured, astmed, exp, log, trig. 4. Tasakaalu mõiste, turu tasakaalu mudelid (1.ja 2. ning n hüvisega) Tasakaalu mõiste- valitud üksteisega seotud mutujate väärtuste niisugune seis, et süsteemi seisund säilub. Turu tasakaalu mudelid: 1 hüvisega: 3 muutujat Qd, Qs, P eeldus Qd-Qs=0, Qd, Qs 4 parameetrit a, b, c, d>0 d ja b tõusud Q d=a-bP langev sirge Lahend: Qd, Qs, P Qd=Qs=Q lahend järjestatud paar (P;Q) Qs=-c+dP tõusev sirge 2 hüvisega: Qd1-Qs1=0 Qd2-Qs2=0 Qd1=a0+a1P1+a2P2 Qd2=a0+a1P1+a2P2 Qs1=b0+b1P1+b2P2 Qs2=b0+b1P1+b2P2 (a0-b0)+(a1-b1)P1+(a2-b2)P2=0 n hüvisega: kõik hüvised sõltuvad kõigist hindadest. Koefitsendid arvulisedlahend arvuline. 5. Maatriksid ja vektorid, maatriksitehted, vektortehted. Maatriks: Olgu i reaindeks ja j veeruindeks siis x1-1.ve-s, xj- j-ndas veerus, aij­ i-nda võrrandi j-nda muutuja koef

Kõrgem matemaatika
212 allalaadimist
thumbnail
48
doc

Lineaaralgebra täielik konspekt

M.Latõnina 1. MAATRIKSID 1.1. Üldmõisted Definitsioon 1. Maatriksiks nimetatakse riskülikujulist arvuliste elementidega tabelit, mis sisaldab n rida ja m veergu : Lühidalt maatriksit võib tähistada erinevate sulgudega (või kahekordsete püstjoontega): A = (aij ) = [aij ] = aij , (1.1) kus i = 1,...,n on rea number, j = 1,...,m on veeru number. Arve aij nimetatakse maatriksi elementideks. Nii et esimene alumine indeks näitab, mitmendas reas asub element , ja teine alumine indeks - mitmendas veerus asub element. Maatriksi suurust saab väljendada valemiga: ridade arv x veergude arv. Antud maatriks (1.1) on suurusega n x m ja seda saab kirjutada järgmiselt : An x m või dim A = n x m (dimensioon ­ suurus). 3 -4 2

Kõrgem matemaatika
858 allalaadimist
thumbnail
2
pdf

Lineaaralgebra

i 1 või i²1 =r(cos+sin) Transporeeritudmaatriks: Maatriksi A transporeeritud maatriks AT saadakse kui Kompleksarv: kirjutatakse maatriksi A read vastavateks veergudeks. Avaldis x iy,kus x ja y on reaalarvud ja i on niinimetatud Kordumine: nA imaginaarühik. pAT

Lineaaralgebra
91 allalaadimist
thumbnail
57
rtf

Maatriksid

1.1. Üldmõisted Definitsioon 1. Maatriksiks nimetatakse riskülikujulist arvuliste elementidega tabelit, mis sisaldab n rida ja m veergu : Lühidalt maatriksit võib tähistada erinevate sulgudega (või kahekordsete püstjoontega): [ ] a = aij A = (aij ) = ij , (1.1) kus i = 1,...,n on rea number, j = 1,...,m on veeru number. Arve aij nimetatakse maatriksi elementideks. Nii et esimene alumine indeks näitab, mitmendas reas asub element , ja teine alumine indeks - mitmendas veerus asub element. Maatriksi suurust saab väljendada valemiga: ridade arv x veergude arv. Antud maatriks (1.1) on suurusega n x m ja seda saab kirjutada järgmiselt : An x m või dim A = n x m (dimensioon ­ suurus). 3 - 4 2 A =

Matemaatika
283 allalaadimist
thumbnail
5
doc

Crameri teoreem lineaarsete võrrandisüsteemide lahendamiseks

See teoreem kehtib meelevaldsete lineaarsete võrrandisüsteemide lahendamiseks, kus võrrandite ja tundmatute arvud on võrdsed. Lisaks peavad võrrandisüsteemid olema korrastatud. Kui lineaarse võrrandisüsteemi maatriksi determinant on nullist erinev, siis avalduvad tundmatud murdudena, mille nimetajaks on süsteemi maatriksi determinant ja mille lugejad on maatriksi, mis saadakse süsteemi maatriksist vastava tunmatu kordajate veeru asendamisel vabaliikmete veeruga, determinandid. Kui maatriks täidab Crameri teoreemi eeldusi, siis öeldakse, et tegemist on Crameri peajuhtumiga. Seega Crameri peajuhtumil 1) m=n, 2) |A| 0. Tähendab, Crameri peajuhul on lineaarsel võrrandisüsteemil üksainus lahend, mis avaldub valemitega x1=|A1|/|A| x2=|A2|/|A| .. xn=|An|/|A| Determinantide omadused, determinandi arendus rea (veeru) järgi Omadus 1. Transponeerimisel (ridade ja veergude ringivahetamisel) detrminant ei

Lineaaralgebra
177 allalaadimist
thumbnail
4
pdf

Lineaaralgebra I osaeksam 2013

1. Kompleksarvu mõiste, imaginaarühik, kaaskompleksarv, kompleksarvude võrdsus ja nulliga võrdumise tingimus. Kompleksarvu moodul, argument ja trigonomeetriline kuju. Kompleksarvuks z nimetatakse avaldist z = a + bi, (1) kus a ja b on reaalarvud ja i on nn. imaginaarühik, mis on määratud võrdustega i = - 1 või i 2 = -1 . Kaht kompleksarvu z = a + bi ja z = a - bi , mis erinevad ainult imaginaarosa märgi poolest, nimetatakse kaaskompleksarvudeks. Kokkuleppe põhjal 1) kaht kompleksarvu z1 = a1 + b1i ja z 2 = a 2 + b2 i loetakse võrdseteks ( z1 = z 2 ) , kui a1 = a 2 ja b1 = b2 , s.t. kui nende reaalosad on võrdsed ja imaginaarosad on võrdsed; 2) kompleksarv võrdub nulliga, s.o. z = a + bi = 0 siis ja ainult siis, kui a = 0 ja b = 0. z = a + bi = r cos + i sin ehk z = r (cos + i sin ) Avaldist võrduse paremal poolel nimetatakse kompleksarvu z = a + bi trigonomeetriliseks kujuks; suurust r nimetatakse kompleksarvu z mooduliks ja suurust selle kompleksarvu argumendiks

Lineaaralgebra
416 allalaadimist
thumbnail
10
docx

Lineaar II

seda det esitada kahe sama järku det summana, kusjuures esimene det koosneb vaadeldava rea/veeru esmestest liid ja teine teistest liid ja ülejäänud liid jäävad oma kohtadele 6) Det väärtus ei muutu, kui tema mingile reale/veerule liita/lahutada mistahes arvuga korrutatud teine rida/veerg 7) Kahe n-järku det A ja B korrutis osutub võrdseks teatava uue n-järku det C, mille üldelement c ij saadakse det A i-nda rea ja det B j-nda veeru kõigi vastavate elementide korrutamisel ja kõigi vastavate elementide liitimisel 8) Kui det mingi rea/veeru kõik elemendid on nulid, siis võrdub ka det enda väärtus nulliga 9) Kui det peadiagonaalist ülal- või allpool kõik elemendid võrduvad nulliga, siis det väärtus võrdub peadiangonaali elementide korrutisega e pealiikmega 10) Det väärtus võrdub nulliga siis ja ainult siis, kui tema ridada/veergude hulk on

Lineaaralgebra
119 allalaadimist
thumbnail
14
doc

KT spikker

1.Lineaarse võrrandisüsteemi definitsioon. Võrrandisüsteemi kordajad, vabaliikmed, lahend. Süsteemi maatriks ja laiendatud maatriks. Lineaarse võrrandi all mõistetakse võrrandit kujul a1 x1 + a2 x2 + ... + an xn = b , (1) kus a1 , a2 , ... , an ja b on fikseeritud arvud ning x1 , x2 , ... , xn on tundmatud. Arvu b nimetatakse vaadeldava võrrandi vabaliikmeks, arve a1 , a2 , ... , an aga tema kordajateks. Def. 1. Võrrandi (1) lahendiks nimetatakse selliseid tundmatute x1 , x2 , ... , xn väärtusi c1 , c2 , ..

Lineaaralgebra
265 allalaadimist
thumbnail
22
docx

Kõrgem matemaatika 1 kordamisküsimused 2017/2018

Kõrgem matemaatika 1 kordamisküsimused 2017/2018 1. Maatriksi definitsioon. Maatriksi elemendid. Maatriksi järk. Ruutmaatriks. Lineaarsed tehted maatriksitega (liitmine ja skalaariga korrutamine). Nullmaatriks. Vastandmaatriks. Lineaarsete tehete omadused. Transponeeritud maatriks. Maatriks on arvude, funktsioonide või muude elementide korraldatud kogum × . Maatriksil on m rida ja n veergu, kus a11; a12; ...a1n; jne on maatriksi elemendid. Kui me räägime järkudest, siis esimest järku matriks on a, teist on a, a, a, a, kui räägime kolmandat järku siis a,a,a,a,a,a,a,a,a (9) Ruutmaatriksi ridade ja veergude arv on sama. Kui me räägime skalaariga korrutamisest, see tähendab lihtslat arv korrutame matriksiga

Kõrgem matemaatika
134 allalaadimist
thumbnail
24
doc

ANALÜÜTILINE GEOMEETRIA RUUMIS, VEKTORID

Kui vektori algus on punktis A ja lõpp punktis B, siis tähistatakse AB , a . Vektor on kindla sihi, suuna ja pikkusega lõik. Siht on teda kandva sirge siht. Suund on alguspunktist lõpp-punkti poole. Definitsioon. Vektori mooduliks nimetatakse tema pikkust, see on lõigu AB pikkust ja tähistatakse   AB  AB , a  a . Vektori moodul on skalaarne mittenegatiivne suurus. Definitsioon. Nullvektoriks nimetatakse vektorit, mille algus- ja lõpp-punkt langevad kokku. Nullvektori moodul on alati võrdne nulliga, tema suund ei ole määratud. Definitsioon. Ühikvektoriks nimetatakse vektorit, mille moodul (pikkus) on 1. Definitsioon. Kollineaarseteks vektoriteks nimetatakse vektoreid, mis asuvad ühel sirgel või paralleelsetel sirgetel.   Kollineaarseid vektoreid tähistatakse a b .  

Matemaatika
38 allalaadimist
thumbnail
22
doc

Kõrgem matemaatika

KORDAMISKÜSIMUSED 2015/2016 Kõrgem matemaatika MTMM. 00.145 (6EAP) 1. Maatriksi mõiste, järk, tähistused, liigid. Maatriks on ristkülikukujuline arvude tabel, milles on m-rida ja n-veergu ja mis on ümbritsetud ümarsulgudega. Maatriksit tähistatakse suure tähega. Kui aij on reaalarvud ning i = 1; 2;...;m ja j = 1; 2;...; n, siis tabelit: nimetatakse täpsemalt (m x n)-maatriksiks ja kasutatakse tähistusi Am x n või Amn. Arvupaari (m; n) nimetatakse maatriksi A mõõtmeteks. Tabelis paiknevaid arve aij nimetatakse maatriksi elementideks. i ­ reaindeks; j ­ veeruindeks.

Kõrgem matemaatika
212 allalaadimist
thumbnail
2
doc

Matemaatika eksamiks

Tehted maatriksitega: Liitmine [aij]+-[bij]=[aij+-bij], Skalaariga korrutamine k[aij]=[kaij], Korrutamine Am·n·Bn·p=Cm·p, Reaalarve, milledest maatriks koosneb, nimetatakse maatriksi elementideks. Maatriksiks nimetatakse ¨umarsulgudesse paigutatud reaalarvude tabelit, milles on ristatavad read ja veerud. Maatriksit, mille ridade arv on v~ordne veergude arvuga, s.t. m = n, nimetatakse ruutmaatriksiks. Maatriksit, mille ridade arv erineb veergude arvust, s.t. m 6= n, nimetatakse ristk¨ulikmaatriksiks. Ruutmaatriksit m~o~otmetega (n, n) nimetatakse ka n-j¨arku maatriksiks

Informaatika1
75 allalaadimist
thumbnail
3
pdf

Lineaaralgebra, II osaeksami vastused, 2013

1.Lineaarse võrrandisüsteemi definitsioon. Võrrandisüsteemi kordajad, vabaliikmed, lahend. Süsteemi maatriks ja laiendatud maatriks. Lineaarseks võrrandisüsteemiks nimetatakse lõplikust arvust lineaarseist võrrandeist koosnevat a11 x1 + a12 x 2 + ...a1n xn = b1 süsteemi. Tema üldkuju on: (3) a 21 x2 + a 22 x 2 + ...a 2 n x n = b2 Arve a ij nimetatakse võrrandisüsteemi .................... a m1 x1 + a m 2 x 2 + ...a mn x n = bm kordajateks, arve b1 , b2 ,..., bm aga süsteemi vabaliikmeteks

Lineaaralgebra
179 allalaadimist
thumbnail
1
docx

Lineaari eksami materjal

elemendiks, siis öeldakse, et hulk on vaadeldava tehte suhtes +*£() sümmeetrilise maatriksi. At=A. Ruutvormi maatrikskuju: Def.2-kui mistahes xV on eeskirja £ alusel vastavusse seatud kinnine.,C ; +C F=Xt*A*X (X on ruutvormi muutujate maatriks nx1) üks kindel y hulgast W, siis öeldaksem et on määratud ühene kujutus hulgast V hulka W. Hulka C, mille elementideks on kõik sellised 2x2 järku ruutmaatriksid, kus iga maatriksi korral tema peadiagonaali elemendid on võrdsed ning 1. £(a+b)= £(a)+ £(b) lineaarkujutuse

Lineaaralgebra
253 allalaadimist
thumbnail
76
pdf

Kordamine kompleksarv

arku determinandid. Crameri valemid. Kompl Kompleksarvu m˜oiste Arvhulkade vahel valitseb seos N ⊂ Z ⊂ Q ⊂ R ⊂ ? ⊂ ?? . . . imaginaar¨ uhik: i2 = −1 Arvu kujul z = a + b · i, kus a, b ∈ R ja i on imaginaar¨ uhik, nimetatakse kompleksarvuks. Arvu a nimetatakse kompleksarvu reaalosaks ja t¨ahistatakse Re(z) = a, arvu b nimetatakse imaginaarosaks ja t¨ahistatakse Im(z) = b. Teist ja kolmandat j¨ arku determinandid. Crameri valemid. Kompl Kompleksarvu m˜oiste Arvhulkade vahel valitseb seos N ⊂ Z ⊂ Q ⊂ R ⊂ ? ⊂ ?? . . . imaginaar¨ uhik: i2 = −1

Matemaatika
6 allalaadimist
thumbnail
9
doc

Lineaarsete algebraliste võrrandite süsteem

x f X= 2 , F= 2 . ... ... x f n n Kui m < n , siis on alamääratud süsteem, osa tundmatuid jääb määramata, kui m > n , siis on ülemääratud süsteem, lahend võib üldse puududa, kui m = n , siis on üks lahend kui det A 0 . Homogeense võrrandsüsteemi vabaliige on null ehk AX = 0 . Homogeensel võrrandsüsteemil esineb alati triviaalne lahend X = 0 . Homogeensel võrrandsüsteemil on m = n korral mittetriviaalsed lahendid ainult juhul, kui det A = 0 . Kui homogeensel võrrandsüsteemil on üheks mittetriviaalseks lahendiks x1 bx1

Matemaatika
74 allalaadimist
thumbnail
7
doc

Kõrgem matemaatika

Kõrgema matemaatika kordamisküsimused eksamiks 1. Kahe vektori skalaar- ja vektorkorrutis Vektoriks nim suunaga ja pikkusega sirglõiku. Tähistatakse , kus A ja B tähistavad vastavalt vektori algus- ja lõpp-punkti. Vektori mooduliks nim vektori pikkust. Tähistatakse . Ühikvektoriks nim vektorit, mille pikkus võrdub ühega. . Nullvektoriks nim vektorit, mille alguspunkt ja lõpppunkt ühtivad. . Vabavektoriks nim vektorit, mille alguspunkt ei ole fikseeritud, st vektori asendit võib paralleellükke abil muuta. Kahte vektorit nim võrdseks, kui nad on võrdsete moodulitega ning samasuunalised. Vektorite võrdsus erineb lõikude võrdsusest. Vektoreid nim kollineaarseteks, kui nad pärast ühisesse alguspunkti viimist asuvad ühel ja samal sirgel. Võivad olla sama või vastassuunalised. .

Kõrgem matemaatika
477 allalaadimist
thumbnail
28
pdf

Kõrgema matemaatika üldkursus

abil kolmandat jne.), saame suuremaid determinante arvutada nende miinorite ehk alamdeterminantide summana. 8. Maatriksi ja determinantide korrutis on võrdne nende maatrikskorrutise determinandiga olenemata maatriksite järjekorrast . Miinorid ja alamdeterminandid. Elemendi aik miinoriks nimetatakse determinanti, mis saadakse antud maatriksist või determinandist i-nda rea ja k-nda veeru ärajätmisel. Miinorit tähistatakse Mik. Elemendi aik alamdeterminandiks nimetatakse selle elemendi miinorit, kui indeksite summa i+k on paarisarv ja miinorit märgiga -, kui indeksite summa on paaritu arv. Alamdeterminanti tähistatakse Dik . Dik = (-1)i+kMik.Miinor Maatriksi A elemendi aik miinoriks Mik nimetatakse antud maatriksist i-nda rea ja k-nda veeru ärajätmisel saadud maatriksi determinanti. Algebraline täiend

Kõrgem matemaatika
324 allalaadimist
thumbnail
3
doc

Kokkuvõte

1. Maatriksi definitsioon 2. Pöördmaatriksi definitsioon a) Maatriks on ristkülikukujuline tabel, mille ridade ja veergude lõikekohtades Ruutmaatriksi A pöördmaatrksiks nimetatakse maatriksit A-1, mis rahuldab asuvad mingi fikseeritud hulga elemendid. Enamasti eeldatakse, et selle hulga võrdusi elemente saab liita ja korrutada. Kõige sagedamini on selleks hulgaks reaal- või AA-1=A-1A-E. kompleksarvude hulk

Kõrgem matemaatika
182 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun