Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse Registreeri konto

Crameri teoreem lineaarsete võrrandisüsteemide lahendamiseks (2)

5 VÄGA HEA
Punktid
Crameri teoreem lineaarsete võrrandisüsteemide lahendamiseks #1 Crameri teoreem lineaarsete võrrandisüsteemide lahendamiseks #2 Crameri teoreem lineaarsete võrrandisüsteemide lahendamiseks #3 Crameri teoreem lineaarsete võrrandisüsteemide lahendamiseks #4 Crameri teoreem lineaarsete võrrandisüsteemide lahendamiseks #5
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 5 lehte Lehekülgede arv dokumendis
Aeg2012-02-14 Kuupäev, millal dokument üles laeti
Allalaadimisi 177 laadimist Kokku alla laetud
Kommentaarid 2 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor Kaspar G Õppematerjali autor

Märksõnad

Sarnased õppematerjalid

thumbnail
81
pdf

Kõrgem matemaatika / lineaaralgebra

4. Permutatsiooni definitsioon. Inversiooni definitsioon. n-järku determinandi definitsioon. Determinandi põhiomadused 5. Maatriksi elemendi minor. Alamdeterminant. Determinandi arendus rea ja veeru järgi. Determinantide teooria põhivalem. 6. Regulaarse maatriksi mõiste. Pöördmaatriksi definitsioon ja elementide leidmise eeskiri. Pöördmaatriksi omadused. 7. Lineaarse võrrandisüsteemi definitsioon. Võrrandisüsteemi kordajad, vabaliikmed, lahend. Vasturääkiv, kooskõlaline, määratu süsteem. Süsteemi maatriks ja laiendatud maatriks. 8. Süsteemi lahendamine Crameri valemitega. Maatriksi minor. Maatriksi astak. Maatriksi ridade ja veergude elementaarteisendused. Maatriksi rea juhtelement, treppmaatriks. Treppmaatriksi astak. Kronecker-Capelli teoreem 9. Gaussi meetodi sisu. 10. Kompleksarvu mõiste, imaginaarühik, kompleksarvu reaalosa ja imaginaarosa, kompleksarvude võrdsus, kaaskompleksarv

Algebra I
thumbnail
18
pdf

Lineaarsed võrrandi süsteemid

a1 x1 + a2 x2 + ... + an xn = b, (1) kus a1 , ... , an ja b on fikseeritud (antud) arvud ning x1 , ... , xn on tundmatud. http://www.hot.ee/habib/MindReader.htm Arvu b nimetatakse vaadeldava võrrandi vabaliikmeks, arve a1 , ... , an aga tema kordajateks. Näide Võrrandis 5 x + 3 y - 2 z = -4 on vabaliikmeks arv ­4, kordajateks arvud 5, 3 ja ­2 ning tundmatud on tähistatud tähtedega x, y ja z. Lineaarse võrrandi lahend Definitsioon Lineaarse võrrandi (1) lahendiks nimetatakse sellist tundmatute x1 , ... , xn väärtuste komplekti c1 , ... , cn , R, mis asendamisel võrrandi (1) vasakusse poolde muudavad selle samasuseks: a1 c1 + a2 c2 + ... + an cn b. Näide Võrrandi 5 x + 3 y - 2 z = -4 üheks lahendiks on x = 1, y = -1 ja z = 3, kuna antud tundmatute väärtuste asendamisel võrrandisse saame samasuse: 5·1 + 3 ·(-1) - 2 ·3 -4

Matemaatika
thumbnail
24
rtf

Lineaaralgebra eksam

AT = ||bji|| Rnxm, mille veeruvektoriteks on parajasti maatriksi A reavektorid, st bji = aij iga i ja j võimaliku väärtuse korral Ruutmaatriksit A nimetatakse sümmeetriliseks maatriksiks, kui A T = A Maatriksite transponeerimise omadused 1. (AT)T = A iga maatriksi A korral 2. (A + B)T = AT + BT iga A, B Rmxn korral 3. (cA)T = cAT iga c R ja maatriksi A korral 4. (AB)T = BTAT iga A Rmxn ja B Rnxp korral 9. Lineaarne võrrandisüsteem, selle lahend ja maatrikskuju. K - mingi korpus; a1, ...,an K, b - fkseeritud arvud; x1, ..., xn - tundmatud skalaarid; ai - kordajad; b - vabaliige Lineaarse võrrandi all mõistetakse võrrandit kujul a1x1 + a2x2 + ... + anxn = b Võrrandi lahendiks nimetatakse selliseid tundmatute x 1, ..., xn väärtusi c1, ..., cn R, et nende paigutamisel võrrandi vasakusse poolde tundmatute x 1, ..., xn asemele kehtiks võrdus a1c1 + ... + ancn = b

Lineaaralgebra
thumbnail
4
doc

Lineaar algebra teooria kokkuvõte

tundmatute arv n on sõltumatud. Sellist võrrandisüsteemi nimetatakse lineaarseks võrrandisüsteemiks, sest otsitavad suurused x1.. xn esinevad ainult lineaarsetes tehetes, st neid on vaid liidetud ja skalaariga korrutatud. Def. Arvude järjendit c1.. cn nim lvs lahendiks, kui tundmatute asendamisel nende arvudega (loomulikus järjekorras, st x1 = c1.. xn = cn) on süsteemi kõik võrrandid rahuldatud. Võrrsüsteemi nim kooskõlaliseks, kui tal leidub vähemalt 1 lahend. Kui lahendid puuduvad, nim sõsteemi vasturääkivaks. Võrrsüs kõigi lahendite hulka nim võrrsüs lahendihulgaks e üldlahendiks. Igal lvs-l kas lahend puudub, on ühene lahend või on lõpmata palju lahendeid. Cramer. Def. Öeldakse, et lvs-i korral on tegemist Crameri peajuhuga, kui 1)tundmatute arv võrdub võrrandite arvuga 2)võrrsüs kordajate maatriksi determinant erineb nullist. Crameri peajuhul {a11x1+.. +a1nxn=b1 ..;.. an1x1+.

Lineaaralgebra
thumbnail
104
pdf

Konspekt

4 ¨ Ulesandeid 4.1 ¨ Ulesanne Arenda determinant teise rea ning kolmanda veeru j¨argi ning ar- vuta tema v¨a¨artus m~olemal viisil. V~ordle tulemusi. 4 3 -5 0 3 2 0 -5 1 0 -2 3 0 1 -3 4 4.2 ¨ Ulesanne Arvuta determinant omaduste (vt teoreem 2) abil. 3 6 5 6 4 5 9 7 8 6 6 12 13 9 7 = · · · = 5 4 6 6 5 4 2 5 4 5 3 4.3 Vandermonde'i determinant Arvuta n-j¨arku Vandermonde'i determinant 1 1 ... 1 x1 x2 ... xn Vn (x1 , . . . , xn ) := x21 x22 ... x2n = ··· = (xk - xi )

Lineaaralgebra
thumbnail
108
doc

MATEMAATIKA TÄIENDÕPE: Valemid

MATEMAATIKA TÄIENDÕPE VALEMID JA MÕISTED KOOSTANUD LEA PALLAS 1 2 SAATEKS Käesolev trükis sisaldab koolimatemaatika valemeid, lauseid, reegleid ja muid seoseid, mille tundmine on vajalik kõrgema matemaatika ülesannete lahendamisel. Kogumikus on ka mõned kõrgema matemaatika õppimisel vajalikud mõisted, mida koolimatemaatika kursuses ei käsitletud.. 3 KREEKA TÄHESTIK Α α  alfa Ν ν  nüü Β β  beeta Ξ ξ  ksii Γ γ  gamma Ο ο  omikron Δ δ  delta Π π  pii Ε ε  epsilon Ρ ρ  roo Ζ ζ  dzeeta Σ σ  sigma Η η  eeta Τ τ  tau Θ θ  teeta Υ υ  üpsilon Ι ι  ioota Φ φ  fii Κ κ  kap

Algebra I
thumbnail
25
doc

Algebra ja geomeetria kordamine

. xim +1 jn xim +2 jm +1 xim +2 jm +2 ... xim +2 jn M m -n := nimetame miinori Mm täiendusmiinoriks ... ... ... ... xinjm +1 xinjm +2 ... xinjn Märgiga varustatud täiendusmiinorit An-m := (-1)rMn-m, kus r := im+1 + im+2 + · · · + in + jm+1 + jm+2 + . . . jn, nimetatakse miinori Mm algebraliseks täiendiks Laplace teoreem ­ Olgu X n-järku ruutmaatriks ja selliselt, et i1

Algebra ja geomeetria
thumbnail
19
doc

Õppematerjal

nimetatakse süsteemi (1) LAIENDATUD MAATRIKSIKS A|B. See on vastavalt parameetritega m×(n + 1). Kui tähistada tundmatute veergu Xn×1 = (x1, x2, . . . , xn )T, siis saab süsteemi (1) esitada MAATRIKSKUJUL AX = B. (2) DEFINITSIOON 3. Iga tundmatute komplekti X, mis muudab samasuseks kõik võrrandid süsteemis (1) või maatriksvõrrandi (2), nimetatakse LINEAARSE VÕRRANDISÜSTEEMI LAHENDIKS. MÄRKUS. Süsteemi lahend ei tarvitse olla üheselt määratud ja võib sõltuda teatud arvust parameetritest. Selliseid lahendeid nimetatakse SÜSTEEMI ÜLDLAHENDITEKS. Lahendeid, mis saadakse üldlahendist parameetrite fikseerimise teel, nimetatakse SÜSTEEMI ERILAHEN- DITEKS. DEFINITSIOON 4. Kui süsteemil on lahend olemas, siis nimetatakse süsteemi LAHENDUVAKS, vastasel korral aga MITTELAHENDUVAKS ehk vastuoluliseks. 16 DEFINITSIOON 5

Kõrgem matemaatika



Lisainfo

Sisaldab materjale, et läbida lineaaralgebra teooria osa veatult. Samuti aitab õppida ülesannete osa.

Kommentaarid (2)

erik899 profiilipilt
erik899: Super, saan nüüd eksami tehtud
18:41 21-11-2012
Brenda profiilipilt
Brenda: normaalne:)
11:18 23-04-2013





Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun