Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse Registreeri konto

Lineaar algebra teooria2 (9)

3 KEHV
Punktid
Lineaar algebra teooria2 #1 Lineaar algebra teooria2 #2
Punktid 10 punkti Autor soovib selle materjali allalaadimise eest saada 10 punkti.
Leheküljed ~ 2 lehte Lehekülgede arv dokumendis
Aeg2008-11-17 Kuupäev, millal dokument üles laeti
Allalaadimisi 476 laadimist Kokku alla laetud
Kommentaarid 9 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor marekag Õppematerjali autor

Märksõnad

Sarnased õppematerjalid

thumbnail
4
doc

Lineaar algebra teooria kokkuvõte

Lineaarvõrrandsüsteem-nim. Võrrandisüsteemi kujul {a11x1+..+a1nxn=b1 ; am1x1+.. +amnxn=bm. Arve aij nim lvs kordajateks, arvud b1..bm on vabaliikmed ja x1..xn on tundmatud. Süsteemi võrrandite arv m ja tundmatute arv n on sõltumatud. Sellist võrrandisüsteemi nimetatakse lineaarseks võrrandisüsteemiks, sest otsitavad suurused x1.. xn esinevad ainult lineaarsetes tehetes, st neid on vaid liidetud ja skalaariga korrutatud. Def. Arvude järjendit c1.. cn nim lvs lahendiks, kui tundmatute asendamisel nende arvudega (loomulikus järjekorras, st x1 = c1.. xn = cn) on süsteemi kõik võrrandid rahuldatud. Võrrsüsteemi nim kooskõlaliseks, kui tal leidub vähemalt 1 lahend. Kui lahendid puuduvad, nim sõsteemi vasturääkivaks. Võrrsüs kõigi lahendite hulka nim võrrsüs lahendihulgaks e üldlahendiks. Igal lvs-l kas lahend puudub, on ühene lahend või on lõpmata palju lahendeid. Cramer. Def. Öeldakse, et lvs-i korral on tegemist Crameri peajuhuga, kui 1)tundmatute arv võrd

Lineaaralgebra
thumbnail
24
rtf

Lineaaralgebra eksam

1. Kompleksarv kui reaalarvude paar. Tehted kompleksarvudega. Tehete omadused. Kompleksarvu algebraline kuju. Tuletatavad tehted ja nende omadused. Kompleksarvuks nimetatakse reaalarvude paari (x,y). C = {(x;y) | x, y R} Tehted kompleksarvudega: z1 = (x1; y1) C; z2 = (x2; y2) C 1. liitmine: z1 + z2 = (x1 + x2; y1 + y2) 2. korrutamine: z1 * z2 = (x1x2 - y1y2; x1y2 + x2y1) Kompleksarvudega tehete omadused 1. liitmine on kommutatiivne, st z1 + z2 = z2 + z1 z1, z2 C korral 2. liitmine on assotsiatiivne, st (z1 + z2) + z3 = z1 + (z2 + z3) z1, z2, z3 C korral 3. liitmise suhtes leidub nullelement (reaalarv 0, 0 + z = z + 0 = z z C korral), st leidub C, nii et z + = + z = z z korral; = (0; 0) = 0 4. igal kompleksarvul z = (x; y) = x + yi leidub (liitmise suhtes) vastandarv, st selline arv w C, et z + w = w + z = 0; w = -z 5. korrutamine on kommutatiivne, st z1z2 = z2z1 z1, z2 C korral 6. korrutamine on assotsiatiivne, st (z1z2)z3 = z1(z2z3) z1, z2, z3 C korral

Lineaaralgebra
thumbnail
9
doc

Lineaaralgebra

Lineaaralgebra I kontrolltöö teooriaküsimused 1. Kompleksarvu mõiste, imaginaarühik, kaaskompleksarv, kompleksarvude võrdsus ja nulliga võrdumise tingimus. Kompleksarvu moodul, argument ja trigonomeetriline kuju. Kompleksarvuks z nimetatakse avaldist z = a + bi , (1) kus a ja b on reaalarvud ja i on niinimetatud imaginaarühik, mis on määratud võrdustega i = -1 või i 2 = -1 ; Kaht kompleksarvu z = a + bi ja z = a - bi , mis erinevad ainult imaginaarosa märgi poolest, nimetatakse kaaskompleksarvudeks. Kokkuleppe põhjal 1) kaht kompleksarvu z1 = a1 + b1i ja z2 = a2 + b2i loetakse võrdseteks ( z1 = z2 ) , kui a1 = a2 ja b1 = b2 , s.t. kui nende reaalosad on võrdsed ja imaginaarosad on võrdsed; 2) kompleksarv võrdub nulliga, s.o.

Lineaaralgebra
thumbnail
2
pdf

Lineaaralgebra

i 1 või i²1 =r(cos+sin) Transporeeritudmaatriks: Maatriksi A transporeeritud maatriks AT saadakse kui Kompleksarv: kirjutatakse maatriksi A read vastavateks veergudeks. Avaldis x iy,kus x ja y on reaalarvud ja i on niinimetatud Kordumine: nA imaginaarühik. pAT 1* 2=r1*r2*(cos(1+2) +i sin(1+2))

Lineaaralgebra
thumbnail
1
docx

Lineaari eksami materjal

Determinandid Kompleksarvud Lineaarkujutus ja ­teisendus Ruutvormid Def.1-eeskirja £, mis seab hulga V igale elemendile x Kui hulgas on määratud mingisugune tehe ja selle hulga mistahes kahe Kahe vektorruumi V ja W korral määratud kujutust nimetatakse F= ruutvorm, lineaarvorm: vastavusse hulga W teatava elemendi y, nimetatakse kujutuseks elemendiga sooritatud tehte tulemus osutub alati selle sama hulga lineaarkujutuseks, kui on täidetud tingimus £(*+)=*£() Ruutvormi kordajatest saab moodustada nxn järku hulgast V hulka W. elemendiks, siis öeldakse, et hulk on vaadeldava tehte suhtes +*£() sümmeetrilise maatriksi. At=A. Ruutvormi maatrikskuju: Def.2-kui m

Lineaaralgebra
thumbnail
4
pdf

Lineaaralgebra I osaeksam 2013

1. Kompleksarvu mõiste, imaginaarühik, kaaskompleksarv, kompleksarvude võrdsus ja nulliga võrdumise tingimus. Kompleksarvu moodul, argument ja trigonomeetriline kuju. Kompleksarvuks z nimetatakse avaldist z = a + bi, (1) kus a ja b on reaalarvud ja i on nn. imaginaarühik, mis on määratud võrdustega i = - 1 või i 2 = -1 . Kaht kompleksarvu z = a + bi ja z = a - bi , mis erinevad ainult imaginaarosa märgi poolest, nimetatakse kaaskompleksarvudeks. Kokkuleppe põhjal 1) kaht kompleksarvu z1 = a1 + b1i ja z 2 = a 2 + b2 i loetakse võrdseteks ( z1 = z 2 ) , kui a1 = a 2 ja b1 = b2 , s.t. kui nende reaalosad on võrdsed ja imaginaarosad on võrdsed; 2) kompleksarv võrdub nulliga, s.o. z = a + bi = 0 siis ja ainult siis, kui a = 0 ja b = 0. z = a + bi = r cos + i sin ehk z = r (cos + i sin ) Avaldist võrduse paremal poolel nimetatakse kompleksarvu z = a + bi trigonomeetriliseks kujuks; suurust r nimetatakse kompleksarvu z mooduliks ja suurust selle kompleksarvu argumendik

Lineaaralgebra
thumbnail
9
docx

Lineaaralgebra

Kordamisküsimused 1) Kompleksarvu mõiste. Kompleksarvu algebraline kuju ja tehted algebralisel kujul. DEF. k.arvuks nim. Arvufoori (a,b) kus a,bR. esitatakse z=a+bi (a-reaalosa,b-imaginaar osa,i- imaginaar ühik). Põhimõiste olgu z1=a1+b1i,z2=a2+b2i z1=z2 kui a1= a2 ja b1=b2, z=0 kui a=0 ja b=0,k- arvu z1=a1-b1i nim.kaas k-arvuks z1=a1+b1i. Arvutamine z1+z2= (a1+a2)+(b1+b2)i, z1-z2= (a1-a2)+(b1-b2), z1*z2= z 1 ( a1 +b 1 i ) (a 2+b 2 i) (a1+b1i)*(a2+b2), = z 2 ( a2 +b 2 i ) (a 2+b 2 i) 2) Kompleksarvu trigonomeetriline kuju ja tehted trigonomeetrilisel kujul. geomeetriline kujutamine k-arv/reaalarvu paar (a,b).saab k-arvu z=a+bi kujutada xy tasandil kus kordinaadid a-reaal osa, b- imaginaar osa ja vastavalt X-telg k-arvu reaal telg ja Y- telg ­ imaginaar telg.XY tasandi iga punkt M(x,y) ongi z=x+iy

Matemaatiline analüüs 2
thumbnail
48
doc

Lineaaralgebra täielik konspekt

Definitsioon 3. Ruutmaatriksit, mille peadiagonaali kõik elemendid on ,,1", aga kõik ülejäänud elemendid on ,,0", nimetatakse ühikmaatriksiks. Tavaliselt seda tähistatakse E (või I ) tähega. Näide 2: 1 0 0 = 0 1 0 0 0 1 E3x3 on 3 järku ühikmaatriks, -1- Lineaaralgebra elemendid. M.Latõnina 1 0 0 0 1 0 Enxn = n -järku ühikmaatriks. 0 0 1 Ruutmaatriksit, mille elemendid (välja arvates peadiagonaali) on ,,0" ja asuvad ühel pool peadiagonaalist, nimetatakse kolmenurksemaatriksiks: või

Kõrgem matemaatika



Lisainfo

veel teooriat

Kommentaarid (9)

TM89 profiilipilt
TM89: Koosneb vaid küsitavatest punktidest, vastused peab siiski otsima :(
12:02 04-01-2009
romansik profiilipilt
romansik: täitsa ok materjal...tänud
13:32 02-01-2009
wahlberg profiilipilt
wahlberg: Aitas palju, aitäh.
12:23 04-11-2012





Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun