Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Kollokvium II - sarnased materjalid

tuletis, teoreem, diferentseeruv, graafik, ekstreemum, lokaalne, lagrange, kumer, nõgus, rangelt, diferentsiaal, puutuja, kusjuures, tuletamine, käänupunkt, ekstreemumite, ümbrus, jääkliige, asümptoodid, piisavad, tuletised, pidevad, rahuldab, tuletus, maclaurini, otsime, lokaalsed, ekstreemumid, statsionaarsed, kriitilised, statsionaarne
thumbnail
6
doc

Matemaatiline analüüs I, 2. kollokviumi spikker

1. Tuletise lineaarsuse tõestus, st näidata, et saame konstandi tuletise märgi alt välja tuua ning summa tuletis on tuletiste summa. Lause: Kui funktsioonid f(x) ja g(x) on diferentseeruvad punktis x ja cR on konstant, siis selles punktis on diferentseeruv ka funktsioon cf(x) Tõestus:Korrutise tuletisest y’=f’(x)g(x)+f(x)g’(x) lähtuvalt, kui cR on konstant, siis y=c*f(x) tuletis on Tõepoolest, valem kehtib juhul n=1. y’=f(x)*c’+f ’(x)*c=0*f(x)+c*f ’(x)=c*f ’(x) Nüüd tuleb näidata induktsioonisamm: eeldame, et valem kehtib juhul n-1 ja näitame, et sel juhul kehtib ta Lause: Kui funktsioonid f(x) ja g(x) on diferentseeruvad punktis x ja cR on konstant, siis selles punktis on ka n korral. Seega kehtib: diferentseeruv ka funktsioon y=f(x)+g(x)

Matemaatiline analüüs 1
41 allalaadimist
thumbnail
4
pdf

Matemaatilise analüüsi kollokvium II spikker(2LK)

1). (Tuletise lineaarsuse tõestus, st näidata, et saame konstandi tuletise märgi alt välja tuua ning Definitsioon: Funktsiooni y = f (x) nimetatakse rangelt kasvavaks punktis x, kui leidub selline summa tuletis on tuletiste summa). Lause: Kui funktsioonid f(x) ja g(x) on diferentseeruvad positiivne arv δ, et suvaliste x1 ϵ (x - δ; x) ja x2 ϵ (x; x + δ) korral f (x1) < f (x) < f (x2).

Matemaatiline analüüs i
73 allalaadimist
thumbnail
2
odt

Matemaatiline analüüs I, II kollokviumi spikker

1. Funktsiooni diferentseeruvuse geomeetriline tõlgendus. 11. Kumerus, nõgusus, käänupunktid. Seos teist järku tuletisega. Funktsiooni diferentsiaal on kõverjoonele y = f(x) tõmmatud puutuja ordinaadi muut, mis vastab Oeldakse, et funktsiooni f(x) graafik on kumer punktis a (tapsemini punktis (a, f(a))), kui leidub punkti a argumendi numbrile x=dx. selline -umbrus, et funktsiooni f(x) graafik on argumendi x väärtustel ümbrusest (a - , a + ) allpool 2. Funktsiooni kõrgemat järku tuletised. (tapsemini, mitte ulalpool) puutujat, mis on tõmmatud punktis (a, f(a)) funktsiooni graafikule. Oeldakse,

Matemaatiline analüüs
33 allalaadimist
thumbnail
20
docx

Matemaatiline analüüs II kontrolltöö

läheneb nullile?(Tõestada) c. Loetleda diferentsiaali omadused c.1. c.2. c.3. c.4. c.5. 24. Funktsiooni lokaalsete ekstreemumite definitsioonid.Sõnastada ja tõestada Fermat' lemma. a. Funktsiooni lokaalsete ekstreemumite definitsioonid a.1. Öeldakse, et funktsioonil f on punktis x lokaalne miinimum, kui a.1.1. Funktsioon f on määratud punkti x mingis ümbruses a.1.2. Igakorral kehtib võrratus; a.2. Öeldakse, et funktsioonil f on punktis x lokaalne miinimum, kui a.2.1. Funktsioon f on määratud punkti x mingis ümbruses a.2.2. Iga korral kehtib võrratus a.3. Funktsiooni lokaalseid maksimume ja miinimume nimetatakse selle

Matemaatiline analüüs
122 allalaadimist
thumbnail
18
docx

Matemaatiline analüüs KT2 vastused

Seetõttu võime lugeda diferentsiaali dy funktsiooni muudu peaosaks. jääkliikme võib väikese x korral funktsiooni muudu avaldises ära jätta. Kehtib ligikaudne valem y dy kui x 0 . Diferentsiaali omadused. 1. d(u + v) = du + dv, 2. d(u - v) = du - dv, 3. d(uv) = vdu + udv, 4. d(Cu) = Cdu , C - konstant, 5. d() = kui v 0. 24. Funktsiooni lokaalsete ekstreemumite definitsioonid. Sõnastada ja tõestada Fermat' lemma. Öeldakse, et funktsioonil f on punktis x1 lokaalne maksimum, kui 1. funktsioon f on määratud punkti x1 mingis ümbruses (x1 - , x1 + ); 2. iga x (x1 - , x1 + ) korral kehtib võrratus f(x) f(x1). Öeldakse, et funktsioonil f on punktis x1 lokaalne miinimum, kui 1. funktsioon f on määratud punkti x1 mingis ümbruses (x1 - , x1 + ); 2. iga x (x1 - , x1 + ) korral kehtib võrratus f(x) f(x1). Funktsiooni lokaalseid maksimume ja miinimume nimetatakse selle funktsiooni lokaalseteks ekstreemumiteks.

Matemaatiline analüüs I
120 allalaadimist
thumbnail
15
docx

Matemaatika analüüsi II Kontrolltöö

järku kahanev suurus suhtes. Järelikult võimalikult väikse väärtuse korral hakkab diferentsiaal avaldises domineerima. a.x. Kehtib võrratus: , kui b. Diferentsiaali omadused: c. 2. Funktsiooni lokaalsete ekstreemumite definitsioonid. Sõnastada ja tõestada Fermat' lemma. a. Öeldakse et funktsioonil f on punktis x1 lokaalne maksimum, kui: a.i. Funktsioonil f on määratud punkt x1 mingis ümbruses (x1-, x1+ ) a.ii. Iga x (x1-, x1+ ) korral kehtib võrratus f(x) f(x1) b. Öeldakse et funktsioonil f on punktis x1 lokaalne miinimum, kui: b.i. Funktsioonil f on määratud punkt x1 mingis ümbruses (x1-, x1+ ) b.ii. Iga x (x1-, x1+ ) korral kehtib võrratus f(x) f(x1) c. Funktsiooni lokaalseid maksimume ja miinimume nimetatakse selle funktsiooni

Matemaatiline analüüs 2
99 allalaadimist
thumbnail
3
docx

Matemaatiline analüüs 1

23Funktsiooni muudu peaosa ja jääkliige. Olgu antud funktsioon, mis on diferentseeruv punktis a. Eeldame, et f(a)0 26l'Hospitali reegli põhjal saab 0/0 tüüpi määramatusega piirväärtuse arvutamisel üle minna piirväärtusele, mille all kasutades mõisteid: esineb esialgse murru lugeja tuletise ja nimetaja tuletise jagatis.

Matemaatiline analüüs 1
66 allalaadimist
thumbnail
3
docx

Kollokvium III 1.17-1.23 kõik

Niiet kui on täidetud see sama tingimuste kompott ja kehtivad sellised piirväärtused ja eksisteerib , siis kehtib võrdus . N. N. 1.18.Taylori polünoom. Olgu y=Pn(x) n-järku vektorruum, kus baasiks on {1, x-a, (x-a)2,...,(x-a)n} . Leian kordajad Ck: Pn(a)=C0 . Diferentseerides mõlemaid pooli, saame, et . Analoogilist mõttekäiku jätkates jõuame tulemuseni: N. P2(x)=x2+x-7 [P2(x)=5+7/1!(x-3)+2/2!(x-3)2] 1.19. Taylori valem. Kui funktsioon f(x) on kohal a diferentseeruv n-korda, siis on võimalik funktsioonile seada vastavusse n-järku Taylori polünoom: Et üldjuhul need asjad ei ole võrdsed, siis kehtib seos: Kogu seda asja nim Taylori valemiks punktis a, ning seda esimest osa Taylori n-järku polünoomiks kohal a ( Tn(x) ) ja Rn-i nim Taylori valemi jääkliikmeks. Funktsiooni f(x) Taylori valemit a=0 korral nim f-ni f(x) n-järku Maclaurini valemiks: Ja seda sama asja ilma Rn(x)-ta nim Maclaurini polünoomiks Mn(x)=. Ning selljuhul oleks

Matemaatiline analüüs
53 allalaadimist
thumbnail
4
pdf

Matemaatiline analüüs I teine teooria

Δ→0− Δx 5.Liitfunktsioon:  ​Kui funktsioonidel  u=f(x)  ja  y=g(u)  eksisteerivad lõplikud tuletised vastavalt  kohtadel  x ja f(x), siis liitfunktsioonil  y=g(f(x))  on  lõplik tuletis kohtadel x, kusjuures g´(f(x))*f´(x)  6.  Pöördfunktsiooni  tuletis:  ​ Kui  lõigul  [a;b]  pideval  ja  rangelt  monotoonsel  funktsioonil  y=f(x)   on  kohal   x   nullist  erinev  tuletis,   siis  pöördfunktsioonil x=f​ (y) leidub tuletis kohal f(x), kusjuures dx ­1​ 1 dy = dy   dx 7

Matemaatiline analüüs
42 allalaadimist
thumbnail
4
doc

Matemaatiline analüüs - teooria spikker

Moodustame integraalsumma katkevuspunktid. Teoreemid lõigul pideva funktsiooni Definitsioon Funktsiooni y=f(x) määratud integraaliks lõigul kohta. [a,b] nimetatakse piirväärtust 6. Funktsiooni tuletis ja selle geomeetriline tähendus. Puutuja ja normaali võrrand. x/2=arctan t ; x=2arctan t ; dx=2/1+t 2dt 7. Teoreem diferentseeruva funktsiooni pidevusest 2

Matemaatiline analüüs
973 allalaadimist
thumbnail
23
docx

MATEMAATILINE ANALÜÜS TÖÖ VASTUSED

vastavad funktsiooni väärtused teises reas. On võimalik ainlult siis, kui funktsioonil on arvuline väärtus. 2. Analüütiline esitlusviis ­ Funktsioon esitatakse valemi kujul, vajadusel lisatakse määramispiirkonna kirjeldus 3. Graafiline esitlusviis ­ Funktsioon esitatakse graafikuna tasandil ristkordinaadistikus. · Funktsiooni f graafiku definitsioon Kui f(x)>0 siis on graafik ülalpool x-telge, kui x<0 siis on graafik allpool x-telge · Funktsioon on ühene, kui suvaline y teljega paralleelne sirge läbib graafikut ainult ühest punktist. · Funktsioon on mitmene, kui suvaline y teljega paralleelne sirge läbib graafikut vähemalt kahest punktist. 3. · Paarisfunktsioon ­ kui iga korral kehtib võrdus · Paaritufunkstioon ­ kui iga korral kehtib võrdus · Perioodiliseks nimetame funktsiooni, kui leidub konstant nii, et iga korral kehtib võrdus

Matemaatika analüüs I
104 allalaadimist
thumbnail
8
docx

Matemaatiline analüüs KT2

20. Esitada funktsiooni muut diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? Tõestada ei ole vaja. Funktsiooni muudu peaosa ja jääkliige. Olgu antud funktsioon, mis on diferentseeruv punktis a. Eeldame, et f (a)0. Valemist näeme, et funktsiooni muut y koosneb kahest liidetavast, millest esimene on diferentsiaal dy = f(a)x ja teine on . Mõlemad liidetavad on lõpmatult kahanevad protsessis x 0. Näeme, et esimene liidetav, so diferentsiaal dy on sama järku lõpmatult kahanev suurus kui x ja teine liidetav on kõrgemat järku lõpmatult kahanev suurus x suhtes. Järelikult väikese x korral hakkab diferentsiaal funktsiooni muudu avaldises domineerima

Matemaatiline analüüs
231 allalaadimist
thumbnail
5
docx

KÕIK Kollokvium II kohta. 1.10-1.16

1.10 Funktsiooni tuletis DEF 1.Funktsiooni y=f(x) tuletiseks kohal x nim. funktsiooni y=f(x) muudu y ja argumendi muudu x suhte piirväärtust, kui argumendi muut läheneb nullile. f´(x)=limy/x, piirprotsessis x->0 DEF 2. Kui funktsioonil f(x) on tuletis kohal x, siis öeldakse, et funktsioon on diferentseeruv punktis x. f´(x0) <->f(x) D(x0) DEF 3. Funktsiooni y=f(x) parempoolseks tuletiseks kohal x nim. suurust f´(x+)=limy/x, piirprotsessis x->0+ DEF 4. Funktsiooni y=f(x) vasakpoolseks tuletiseks kohal x nim. suurust f´(x-)=limy/x, piirprotsessis x->0- Funktsiooni tuletis: Lause 1. Funktsiooni f(x) diferentseeruvusest punktis x järeldub selle funktsiooni pidevus punktis x,st Tõestus. Funktsiooni diferentseeruvus punktis x tähendab, et .

Matemaatiline analüüs
78 allalaadimist
thumbnail
37
docx

Matemaatiline analüüs l.

neil vastavad funktsiooni väärtused tabeli teises reas (veerus). On võimalik vaid siis, kui funktsiooni argumendil on lõplik arv väärtusi. 2. Anaüüutiline esitusviis. Funktsioon esitatakse valemi kujul. Kui vaja, lisatakse ka määramispiirkonna kirjeldus. 3.Graafiline esitusviis. Funktsioon esitatakse graafikuna tasandil ristkoordinaadistikus. Funktsiooni f graafiku definitsioon on järgmine: G = {P = (x, f(x)) || x X} . Kui f(x) > 0, siis graafik paikneb ülalpool x-telge. Kui aga f(x) < 0, siis graafik jääb x-teljest allapoole. Kui suvaline y-teljega paralleelne sirge saab funktsiooni graafikut lõigata maksimaalselt ühes punktis, siis funktsioon on ühene. Juhul, kui eksisteerib vähemalt üks y-teljega paralleleelne sirge lõikab funktsiooni graafikut mitmes punktis, vaadeldav funktsioon on mitmene. 3. Paaris- ja paaritud funktsioonid. Perioodilised funktsioonid. Kasvavad ja kahanevad funktsioonid. Astmefunktsioon

Matemaatiline analüüs
484 allalaadimist
thumbnail
21
docx

Matemaatiline analüüs 1, teine teooriatöö kordamisküsimused

4. d (Cu ) =Cdu, C-konstant (u) 5. d v = vdu-udv v2 , kui v 0 24.Funktsiooni lokaalsete ekstreemumite definitsioonid. Sõnastada ja tõestada Fermat' lemma. a. Funktsiooni lokaalsete ekstreemumite definitsioonid 1.Öeldakse, et funktsioonil f on punktis x lokaalne miinimum, kui 1. Funktsioon f on määratud punkti x mingis ümbruses (x - , x + ); 2. Iga x ( x - , x + ) korral kehtib võrratus f ( x) f (x ) ; 2.Öeldakse, et funktsioonil f on punktis x lokaalne miinimum, kui 1.Funktsioon f on määratud punkti x mingis ümbruses ( x 1- , x 1+ ) ; 2.Iga x (x - , x + ) korral kehtib võrratus f (x) f (x ) . 3.Funktsiooni lokaalseid maksimume ja miinimume nimetatakse selle funktsiooni lokaalseteks ekstreemumiteks

Matemaatika
9 allalaadimist
thumbnail
4
docx

Kollokvium 1

v.s ja z = z (x) on tõkestatud ümbruses U (a), siis z on protsessis x l.v.s. 6. Funktsiooni pidevus. Funktsiooni y = f (x) nimetatakse pidevaks kohal a, kui lim xa f (x) = f (a). Funktsiooni nimetatakse pidevaks piirkonnas A, kui ta on pidev piirkonna A igas punktis. Definitsioon nõuab kolme tingimuse täidetust: o Leidub lim xa f (x) o Leidub f (a), st a X o lim xa f (x) = f (a) 7. Funktsiooni tuletis, tuletise omadused. o Funktsiooni y = f (x) tuletiseks kohal x nimetatakse y = f (x) muudu y ja argumendi muudu x suhte piirväärtust, kui argumendi muut läheneb nullile. f' (x) = lim x 0 y / x = lim x 0 f (x + x) ­ f (x) / x 8. Funktsiooni diferentsiaal, omadused. o Funktsiooni y = f (x) diferentsiaaliks dy nimetatakse avaldist dy = f' (x) x. o Omadused:

Matemaatiline analüüs
206 allalaadimist
thumbnail
1
doc

Matemaatiline analüüs 1 (2 teooria töö)

KT2 Pöördfunktsiooni tuletis on antud funktiooni tuletise pöördväärtus. Kui l~oigul [a; b] pideval ja rangelt monotoonsel funktsioonil y =f(x) leidub kohal a nullist erinev tuletis, siis pöördfunktsioonil x = g(y) leidub tuletis kohal b = f(a), kusjuures g '(b)=1/f ' (a) Param kujul f tuletis: kui f y=f(x) on antud parameetrilisel kujul x(t)=(t); y(t)=(t) , t=[a,b], kusjuures f-id (t) ja (t) on diferentseeruvad vahemikus (a,b) ja (t) on rangelt monotoonne lõigul[a,b] ning (t)0 (t=(a,b), siis y '=(t)/(t) F f(x) n-järku tuletiseks nim f-i f(x) (n-1)-järku tuletise tuletits, st fn(x)=(fn-1(x)) ' F-i y=f(x) n-järku diferentsiaaliks nim diferentsiaali selle f-i n-1 järku diferentsiaalist dny=d(dn-1y) Funktsiooni y = f(x) nimetatakse rangelt kasvavaks punktis x, kui leidub selline positiivne arv , et suvaliste x1 (x-,x) ja x2 (x; x + ) korral f(x1) < f(x) < f(x2)

Matemaatiline analüüs
261 allalaadimist
thumbnail
16
docx

J. Kurvitsa teooria vastused

1. Kollokvium 1. Hulga mõiste. Järjestatud hulk. Tehted hulkadega. Arvuhulgad. Teoreem. Ei leidu ratsionaalarvu, mille ruut on 2 (tõestada). Tõkestatud hulgad (näide). Tõkestamata hulgad (näide). Hulk koosneb elementidest, kusjuures elemendid ei kordu ja nende järjestus ei ole kindlaks määratud. Järjestatud hulk koosneb samuti elementidest, kuid selles hulgas on iga kahe elemendi kohta võimalik öelda, kumb neist on eelnev, kumb järgnev. Tehted hulkadega: * Hulkade A ja B ühendiks ehk summaks nimetatakse hulka, mille moodustavad kõik kas

Matemaatiline analüüs
195 allalaadimist
thumbnail
22
doc

Matemaatiline analüüs I - kordamine eksamiks (ainekava järgi koostatud konspekt)

Ülalt tõkestatud hulga vähimat ülemist tõket nimetatakse selle hulga ülemiseks rajaks ning tähistatakse sup X. Alt tõkestatud hulga suurimat alumist tõket nimetatakse selle hulga alumiseks rajaks ning tähistatakse inf X. Teoreem (pidevuse aksioom) Igal ülalt tõkestatud reaalarvude hulgal on olemas ülemine raja; igal alt tõkestatud reaalarvude hulgal on olemas alumine raja. 3. Funktsiooni mõiste. Funktsiooni määramispiirkond, muutumispiirkond, graafik. Funktsiooni põhilised esitusviisid. Liitfunktsioon, pöördfunktsioon. Paaris- ja paaritud funktsioonid. Perioodilised funktsioonid. Põhilised elementaarfunktsioonid. Elementaarfunktsioonid. Funktsioon - Kui igale arvule x X on mingi eeskirja f abil seatud vastavusse üks reaalarv y , siis öeldakse, et hulgas X on määratud funktsioon y=f(x) ja kirjutatakse y=f(x), x X Määramis ja muutumispiirkond - Hulka X nimetatakse funktsiooni määramispiirkonnaks ja hulka

Matemaatiline analüüs i
776 allalaadimist
thumbnail
10
docx

Kordamisküsimusi 3. teema kohta - Teooriatöö II

Kordamisküsimusi 3. teema kohta 1. Defineerida funktsiooni tuletis. Mis on diferentseeruv funktsioon ja diferentseerimine? Funktsiooni f tuletiseks punktis a nimetatakse järgmist suurust: f ( x )−f (a) f ' ( a )=lim x→ a x−a Kui funktsioon f omab punktis a lõplikku tuletist, siis öeldakse et ta on selles punktis diferentseeruv. Tuletise arvutamist nimetatakse diferentseerimiseks. 2. Esitada tuletise valem funktsiooni muudu ja argumendi muudu kaudu.

Matemaatika analüüs i
5 allalaadimist
thumbnail
36
pdf

Matemaatiline analüüs

Jääkliikme β võib väikese ∆x korral funktsiooni muudu avaldises ära jätta. Kehtib ligikaudne valem ∆y ≈ dy kui ∆x ≈ 0. Loetleda diferentsiaali omadused. 1. d(u + v) = du + dv, 2. d(u − v) = du − dv, 3. d(uv) = vdu + udv, 4. d(Cu) = Cdu, C − konstant, 5. d(u/ v)= (vdu−udv)/ v2 kui v  0. 24. Funktsiooni lokaalsete ekstreemumite definitsioonid. Sõnastada ja tõestada Fermat’ lemma. Öeldakse, et funktsioonil f on punktis x1 lokaalne maksimum, kui 1. funktsioon f on määratud punkti x1 mingis ümbruses (x1 − Ɛ²,x1 +Ɛ ²); 2. iga x ∈ (x1 − Ɛ²,x1 +Ɛ ²) korral kehtib võrratus f(x) ≤ f(x1). Öeldakse, et funktsioonil f on punktis x1 lokaalne miinimum, kui 1. funktsioon f on määratud punkti x1 mingis ümbruses (x1 − Ɛ²,x1 +Ɛ ²); 2. iga x ∈ (x1 − Ɛ²,x1 +Ɛ ²) korral kehtib võrratus f(x) ≥ f(x1). Funktsiooni lokaalseid maksimume ja miinimume nimetatakse selle funktsiooni lokaalseteks

Matemaatiline analüüs 1
13 allalaadimist
thumbnail
6
docx

Mat. Analüüs I ; teooria II osa

Tähistades ja vahe järgmiselt Kehtib võrratus: Et avaldada väärtust kaudu peame kõigepealt avaldama suhte: Korrutades saadud avaldist saame: kus Nüüd näemegi, et koosneb kahest liidetavast, mis kahanevad piirprotsessis Võrdleme neid suuruseid suhtes: Lisaks kehtib veel: · Diferentsiaali omadused: 1. 2. 3. 4. 5. 3. Funktsiooni lokaalsete ekstreemumite definitsioonid. Sõnastada Fermat' lemma. · Funktsiooni lokaalne maksimum ­ Funktsioonil on punktis lokaalne maksimum, kui: a) Funktsioon on määratud mingis ümbruses ( b) Igal puhul kehtib võrratus · Funktsiooni lokaalen miinimum ­ Funktsioonil on punktis lokaalne miinimum, kui: a) Funktsioon on määratud mingis ümbruses b) Iga puhul kehtib võrratus Lokaalseid maksimume ja miinimume nimetatakse funktsiooni lokaalseteks ekstreemumiteks.

Matemaatiline analüüs I
17 allalaadimist
thumbnail
16
docx

Matemaatiline analüüs 2 KT

ANALÜÜS 18. Esitada funktsiooni muut diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu ∆x suhtes, kui ∆x läheneb nullile? Tõestada ei ole vaja.  ∆y = f’(a)∆x + β  Diferentsiaal ja jääkliige on lõpmatult kahanevad protsessis ∆x → 0. 19. Funktsiooni lokaalsete ekstreemumite definitsioonid. Sõnastada Fermat’ lemma (tõestust ei küsi). Öeldakse, et funktsioonil f on punktis x1 lokaalne maksimum, kui 1. funktsioon f on määratud punkti x1 mingis ümbruses (x1 − ɛ, x1 + ɛ); 2. iga x ∈ (x1 − ɛ, x1 + ɛ) korral kehtib võrratus f(x) ≤ f(x1). Öeldakse, et funktsioonil f on punktis x1 lokaalne miinimum, kui 1. funktsioon f on määratud punkti x1 mingis ümbruses (x1 − ɛ, x1 + ɛ); 2. iga x ∈ (x1 − ɛ, x1 + ɛ ) korral kehtib võrratus f(x) ≥ f(x1).

Matemaatika
14 allalaadimist
thumbnail
6
docx

Vähendatud programmi teooria 2

Matemaatiline analüüs I (Vähendatud programmi teooria vastused) Lokaalse ekstreemumi mõiste. Öeldakse, et funktsioonil f on punktis x1 lokaalne maksimum, kui 1. funktsioon f on määratud punkti x1 mingis ümbruses (x1 - , x1 + ); 2. iga x (x1 - , x1 + ) korral kehtib võrratus f(x) f(x1). Öeldakse, et funktsioonil f on punktis x1 lokaalne miinimum, kui 1. funktsioon f on määratud punkti x1 mingis ¨umbruses (x1 - , x1 + ); 2. iga x (x1 - , x1 + ) korral kehtib v~orratus f(x) f(x1). Funktsiooni lokaalseid maksimume ja miinimume nimetatakse selle funktsiooni lokaalseteks ekstreemumiteks. Fermat' lemma. Kui funktsioonil f on punktis x1 lokaalne ekstreemum ja funktsioon on diferentseeruv selles punktis, siis f(x1) = 0. Rolle'i teoreem. Kui funktsioon f on lõigul [a, b] pidev, vahemikus (a, b)

Matemaatiline analüüs
131 allalaadimist
thumbnail
3
doc

Mat. Analüüsi 2. KT konspekt (vähendatud programm)

Mat. Analüüsi 2. KT konspekt (vähendatud programm ) 18. Esitada funktsiooni muut diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? 19. Funktsiooni lokaalsete ekstreemumite definitsioonid. Öeldakse, et funktsioonil f on punktis x1 lokaalne maksimum kui: funktsioon on määratud punkti x1 mingi ümbruses ( ; ) ja iga x ( ; ) korral kehtib võrratus f(x) f(x 1). Öeldakse et funktsioonil on punktis x1 lokaalne miinimum kui: funktsioon f on määratud punkti x1 mingis ümbruses ( ; ) ja iga x kuulumisel ümbrusesse korral kehtib võrratus f(x) f(x1) Sõnastada Fermat' lemma . Kui funktsioonil on punktis x1 lokaalne ekstreemum ja funktsioon on selles diferentseeruv, siis f´(x1)=0 20

Matemaatiline analüüs
55 allalaadimist
thumbnail
8
docx

Matemaatiline analüüs I 2. teooria KT vastused

Seet~ottu v~oime lugeda diferentsiaali dy funkt- siooni muudu peaosaks. J¨a¨akliikme v~oib v¨aikese x korral funktsiooni muudu avaldises ¨ara j¨atta. Kehtib ligikaudne valem y dy kui x 0. Loetleda diferentsiaali omadused. 1. d(u + v) = du + dv, 2. d(u - v) = du - dv, 3. d(uv) = vdu + udv, 4. d(Cu) = Cdu, C - konstant, 5. d(u/ v)= (vdu-udv)/ v2 kui v 0. 24. Funktsiooni lokaalsete ekstreemumite definitsioonid. Oeldakse, et funktsioonil f on punktis x1 lokaalne maksimum, kui 1. funktsioon f on m¨a¨aratud punkti x1 mingis u¨mbruses (x1 - ²,x1 + ²); 2. iga x (x1 - ²,x1 + ²) korral kehtib v~orratus f(x) f(x1). ¨ Oeldakse, et funktsioonil f on punktis x1 lokaalne miinimum, kui 1. funktsioon f on m¨a¨aratud punkti x1 mingis u¨mbruses (x1 - ²,x1 + ²); 2. iga x (x1 - ²,x1 + ²) korral kehtib v~orratus f(x) f(x1). Funktsiooni lokaalseid maksimume ja miinimume nimetatakse selle funkt- siooni lokaalseteks ekstreemumiteks.

Matemaatika
46 allalaadimist
thumbnail
39
pdf

Matemaatiline analüüs I konspekt -Tõkestatud hulgad

hulka X . Definitsioon: Öeldakse, et reaalarv a on hulga X rajapunkt kui igas tema ümbruses leidub nii hulga X punkte kui ka neid punkte, mis ei kuulu hulka X . Sisepunkt ei saa olla rajapunkt. Sisepunkt on alati kuhjumispunkt. Rajapunkt võib olla kuhjumispunkt. 1 Kordamine matemaatilise analüüsi I eksamiks matemaatika-informaatika teaduskonnas 04/05 õ.a Funktsioon, tema graafik Olgu X mingi reaalarvude hulk. Kui x tähendab mis tahes arvu hulgast X , siis öeldakse, et x on muutuv suurus ehk muutuja hulgas X . Iga arvu x X nimetatakse muutuja x väärtuseks. Definitsioon: Kui igale arvule x X on mingi eeskirja f abil seatud vastavusse üks reaalarv y , siis öeldakse, et hulgas X on määratud funktsioon y = f ( x ) ja kirjutatakse: y = f ( x ) , x X . Muutujat x nimetatakse funktsiooni argumendiks ehk sõltumatuks muutujaks ja muutujat y tema sõltuvaks muutujaks

Matemaatiline analüüs I
73 allalaadimist
thumbnail
16
pdf

Teooria 2. kollokvium

Teooria 2. kollokvium 1.Funktsiooni diferentseeruvuse geomeetriline tõlgendus 2. Funktsiooni kõrgemat järku tuletised. Kui funktsioonil 𝑓′ eksisteerib tuletis punktis a, siis seda tuletist nimetatakse funktsiooni 𝑓 teist järku tuletiseks kohal a. 𝑓′ (𝑥)−𝑓′ (𝑎) 𝑓 ′′ (𝑎) ≔ [𝑓 ′ (𝑎)]′𝑥=𝑎 = lim𝑥→𝑎 𝑥−𝑎 Kui funktsioonil 𝑓 (𝑛−1) eksisteerib tuletis punktis a, siis seda tuletist nimetatakse funktsiooni 𝑓 n-

Matemaatika
15 allalaadimist
thumbnail
26
doc

Matemaatiline analüüs I - kordamine eksamiks

5. Ekvivalentsed lõpmata väikesed funktsioonid Definitsioon 4. Funktsiooni = (x) nimetame lõpmata väikeseks (hääbuvaks) piirprotsessis x a, kui lim xa (x)= 0. Definitsioon 5 Lõpmata väikeseid funktsioone = (x) ja = (x) nimetatakse ekvivalentseteks piirprotsessis x a, kui ( x ) lim xa ( x ) = 1. Kirjutame (x) ~ (x), x a. Teoreem 8. Kui piirprotsessis x a lõpmata väikeste funktsioonide y= (x), y= 1(x), y= (x), y=1(x) korral (x) 1(x), (x) 1(x) ja eksisteerib piirväärtus ( x ) lim x a , 1 ( x ) siis ( x) ( x) 1) lim x a = lim x a 1 , ( x) 1 ( x)

Matemaatiline analüüs i
687 allalaadimist
thumbnail
32
doc

Matemaatika I küsimused ja mõisted vastustega

ühepoolsed piirväärtused f ( a+) = lim f(x); x a+ ja f( a- ) = lim f(x); x a - nimetatakse 1. liiki katkevuspunktiks. ( hüppekoht, kõrvaldatav katkevuskoht, ................................................... 3 17. Teist liiki katkevuspunkt - arvu a nimetatakse funktsiooni y = f(x) teist liiki katkevuspunktiks, kui lim f(x); x a - on lõpmatu või ei eksisteeri ............................................ 4 20. Diferentseeruv funktsioon - kui funktsioonil y = f(x) on tuletis punktis x = x0, siis ütleme, et funktsioon on diferentseeruv punktis x0. Kui funktsioon on aga diferentseeruv mingi piirkonna igas punktis, öeldakse, et funktsioon on diferentseeruv selles piirkonnas. ..................................... 4 1. Arvuhulgad: naturaal-, täis-, ratsionaal-, reaal- ja kompleksarvud. Nende omadused. ...............6 2. Reaalarvu absoluutväärtus, absoluutväärtuse omadused. ............................................................6 Absoluutväärtuse omadused..

Matemaatika
118 allalaadimist
thumbnail
2
docx

Kollokvium II

1.10 Funktsiooni tuletis DEF 1.Funktsiooni y=f(x) tuletiseks kohal x nim. funktsiooni y=f(x) muudu y ja argumendi muudu x suhte piirväärtust, kui argumendi muut läheneb nullile. f´(x)=limy/x, piirprotsessis x->0 DEF 2. Kui funktsioonil f(x) on tuletis kohal x, siis öeldakse, et funktsioon on diferentseeruv punktis x. f´(x0) <->f(x) D(x0) DEF 3. Funktsiooni y=f(x) parempoolseks tuletiseks kohal x nim. suurust f´(x+)=limy/x, piirprotsessis x->0+ DEF 4. Funktsiooni y=f(x) vasakpoolseks tuletiseks kohal x nim. suurust f´(x-)=limy/x, piirprotsessis x->0- 1.11 Liitfunktsiooni tuletis. Pöördfunktsiooni tuletis. Parameetriliselt esitatud funktsiooni tuletis. Ilmutamata funktsiooni tuletis. Logaritmiline diferentseerimine. Vaata näiteid vihikust! 1.12 Põhiliste elementaarfunktsioonide tuletised.

Matemaatiline analüüs
143 allalaadimist
thumbnail
5
doc

Matemaatilise analüüsi 2.kollokviumi

Mitmemuutuja funktsiooni mõiste. Mitmemuutuja funktsiooni piirväärtuse definitsioon. Pideva mitmemuutuja Kui funktsiooni z=f(x,y) on diferentseeruv kohal (x,y), siis funktsioon f on pidev sellel kohal. funktsiooni definitsioon. Kahemuutuja funktsiooni pidevuse geomeetriline sisu. Funktsioon z=f(x,y) on diferentseeruv kohal (x,y) siis, kui funktsioonil z=f(x,y) on pidevad osatuletised fx ja fy kohal (x,y). Kui hulga Rn igale punktile P(x1, . . . , xn) on vastavusse seatud muutuja u R kindel väärtus, siis öeldakse, et hulgal on Kui funktsiooni f(x,y) osatuletised fx(x,y) ja fy(x,y) on diferentseeruvad kohal (x,y), siis fxy = fyx kohal (x,y). defineeritud n-muutuja (skalaarväärtusega) funktsioon

Matemaatiline analüüs 2
37 allalaadimist
thumbnail
5
docx

Teine osaeksam, matemaatiline analüüs I, teooriaküsimused

Olgu antud argumendi x ilmutamata funktsioon y järgmise võrrandiga: 2x y = y - y - x = 0. Diferentseerime seda x järgi: 6 y y - y - 2 x = 0, millest 6 2 5 6 y - 1 4. Rolle´i teoreem koos geomeetrilise tõlgendusega. Lagrange´i teoreem koos geomeetrilise tõlgendusega. Cauchy teoreem. Rolle´i teoreem: Kui funktsioon f ( x ) on lõigul [ a, b] pidev, selle lõigu igas seesmises punktis diferentseeruv ja lõigu otspunktides x = a ja x = b võrdne nulliga [ f ( a ) = f ( b ) = 0] , siis leidub sellel lõigul vähemalt üks seesmine punkt x = c, a < c < b , milles tuletis f ( x ) on null, s.o. f ( c ) = 0 . Lagrange´i teoreem

Matemaatika analüüs I
147 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun