Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Enno Paisu konspekt - sarnased materjalid

teoreem, sarv, ivari, tuletis, piirväärtus, integraal, ekstreemum, lõpmatu, diferentsiaal, vaatleme, diferentseeruv, lagrange, ümbrus, integraalsumma, puutu, katkevuspunkt, puutuja, tuletised, võrratus, ilmutamata, muutuja, kumer, asümptood, piirväärtused, märkus, arctan, asümptoodi, tõepoolest, avaldis, ekstreemumid, nõgus, algfunktsioon
thumbnail
51
pdf

Matemaatilise analüüsi konspekt

reaalmuutuja funktsioonil: B ( x) 1) A( x) 0 A( x) 2) 2 x A( x) A( x) 0 3) logaA(x) A(x) >0 arcsin A( x) 4) -1 A( x) 1 arccos A( x) Funktsiooni y=f(x) pöördfunktsiooniks nim. f-ni y=g(x), mis igale funktsiooni f väärtusele y seab vastavusse need argumendi x väärtused, mille korral y=f(x) Olgu funktsioonid y=f(x) ja y=g(x), siis väärtus y on teisendatud argumendi x liitfunktsiooniks ehk kompositsiooniks y=f[g(x)]=f*g(x) © 2001 - Ivari Horm ([email protected]), Toomas Sarv 1 Funktsiooni piirväärtus. Teoreemid piirväärtuste kohta (tõestusega). Arv a on funktsiooni y=f(x) piirväärtuseks tingimusel, et xx0, kui >0, () >0, et 0< x-x0< f(x)-a< Selleks, et funktsioonil y = f (x) oleks piirväärtus, kui xx0 on piisav ja tarvilik, et eksisteeriksid ühepoolsed piirväärtused ja et nad oleks võrdsed. lim f ( x) = lim f ( x) = a x x0 - 0 x x0 + 0 Teoreemid piirväärtuste kohta.

Matemaatiline analüüs
11 allalaadimist
thumbnail
37
docx

Matemaatiline analüüs l.

Süsteem määrab iga t [T1, T2] korral ühe kindla arvupaari ehk tasandi punkti ristkoordinaatidega (x, y) = ((t), (t)). Üldiselt vastavad muutuja t erinevatele väärtustele ka erinevad tasandi punktid. Kui muutuja t jookseb läbi kogu lõigu [T1, T2], siis t-le vastav punkt kujundab tasandil teatud joone. Võrrandeid nimetatakse selle joone parameetrilisteks võrranditeks ja muutujat t selle joone parameetriks. Parameetrilisel kujul antud funktsioon. Vaatleme funktsiooni y = f(x). Toome lisaks muutujatele x ja y sisse ka kolmanda muutuja t (nn parameetri). Olgu muutuja x parameetri t funktsioon, st x = (t). Siis saab ka muutuja y avaldada parameetri t kaudu. Tõepoolest: kasutades muutuja x valemit arvutame y = f(x) = f[(t)] = (f )(t). Seega, tähistades = f saame võrrandi y = (t). Võtame need kaks võrrandit kokku ühte süsteemi. Kui parameetri t muutumispiirkond on lõik [T1, T2], näeb see süsteem välja järgmine: { x = (t)

Matemaatiline analüüs
484 allalaadimist
thumbnail
35
pdf

Mitmemuutuja funktsioonid

omab lõpliku väärtust, nimetatakse selle funktsiooni määramispiirkonnaks. Kõigi väärtuste y hulk, mida funktsioon omandab, kui selle argumendid läbivad määramispiirkonna X, on funktsiooni väärtuste hulgaks Y. Määramispiirkonna leidmine. Avaldis Tingimus 1. B ( x, y ) A( x, y ) 0 A( x, y ) 2. 2 k A( x, y ) A( x, y ) 0 3. log a A( x, y ) A( x, y ) > 0 4. arcsin A( x, y ) - 1 A( x, y ) 1 arccos A( x, y ) 2. Kahe muutjua funktsiooni piirväärtus ja pidevus. Teoreemid kinnises tõkestatud piirkonnas pideva funktsiooni kohta. Kui Q( x, y ) lähenemisel punktile P( x0 , y 0 ) funktsiooni z = f ( x, y ) piirväärtus on arv a, siis me kirjutame lim f ( x, y ) = a x x0 y y0 Def. 2.1. Arv a on funktsiooni z = f ( x, y ) piirväärtuseks tingimusel, et Q( x, y ) P( x0 , y 0 ) , kui Q ( x, y ) U ( P ) < 0 , ( ) > 0 , et f ( x, y ) - a < .

Matemaatiline analüüs 2
240 allalaadimist
thumbnail
9
doc

Matemaatiline analüüs - konspekt I

funktsiooni väärtused f(x) vastavalt valemile f(x)= x ruudus. Analüütiliselt antud funktsiooni loomulikuks määramispiirkonnaks nimetatakse argumendi kõigi nende väärtuste hulka mille korral on funktsiooni avaldis täielikult määratud. 3. Graafline esitusviis. Funktsioon esitatakse graa_kuna tasandil ristkoordinaadistikus. Olgu antud funktsioon f, mille argument on x, sõltuv muutuja y ja määramispiirkond X. Kanname tasandile ristuvad x- ja y-teljed. Vaatleme selles teljestikus joont G, mis koosneb kõikvõimalikest punktidest P = (x, f(x)), kusjuures P esimene koordinaat x jookseb läbi kogu määramispiirkonna X. Seda joont nimetataksegi funtsiooni f graafikuks. Seega, lühidalt kirjutades on funktsiooni f graafiku defnitsioon järgmine: G = {P = (x; f(x)) ||x X} 2. Funktsioonide liike (paaris-, paaritu, perioodiline): Paaris- ja paaritud funktsioonid. Funktsiooni f nim. paarisfunktsiooniks kui iga x X korral kehtib võrdus f(-x) = f(x)

Matemaatiline analüüs
598 allalaadimist
thumbnail
22
doc

Matemaatiline analüüs I - kordamine eksamiks (ainekava järgi koostatud konspekt)

.., ) Täisarvud ­ kõik naturaalarvud ja nende vastandarvud ning lisaks 0, tähistatakse Z m Ratsionaalarvud ­ on sellised reaalarvud, mida saab esitada kahe täisarvu m ja n jagatisena nii et n n 0 . Igal ratsionaalarvul on ka lõpmatu kümnendmurdarendus ja see on alati perioodiline, tähistatakse Q Irratsionaalarvud ­ mitteperioodilised lõpmatud kümnendmurrud. Tähistus I Reaalarvud ­ hulk R, koosneb kõikidest ratsionaal- ja irratsionaalarvudest 2. Tähtsamad reaalarvude hulgad (lõik, vahemik, poollõik). Hulga X R ülemine ja alumine raja. Olgu X mingi reaalarvude hulk (X R). Hulka X nimetatakse ülalt tõkestatud hulgaks, kui leidub selline arv M, nii et x M iga x X korral

Matemaatiline analüüs i
776 allalaadimist
thumbnail
4
doc

Matemaatiline analüüs - teooria spikker

27. Trigonomeetriliste avaldiste integreerimine. 28. Määratud integraal ja selle omadused. 1. Funktsioon. Määramispiirkond, väärtuste hulk. Me vaatleme integraali (sinx,cosx)dx Keskväärtusteoreem (tõestusega). Pöördfunktsioon. 1. Universaalne asendus tan x/2=t Olgu y=f(x) pidev lõigul [a,b] Jaotame lõigu n osaks punktidega 2. Funktsiooni piirväärtus. Teoreemid piirväärtuste x0=a, x1, x2,..,xn=b kohta (tõestusega). J={x0,x1,..,xn} lõigu [a,b] jaotus 3. Lõpmatult vähenevad suurused ja nende järk. Igal lõigukesel xi=xi-xi-1 i=1,2,..,n võtame punkti i =[xi-1,xi] 4

Matemaatiline analüüs
973 allalaadimist
thumbnail
32
doc

Matemaatika I küsimused ja mõisted vastustega

Sisujuht 16. Esimest liiki katkevuspunkt - niisugust katkevuspunkti, kus funktsioonil f on olemas ühepoolsed piirväärtused f ( a+) = lim f(x); x a+ ja f( a- ) = lim f(x); x a - nimetatakse 1. liiki katkevuspunktiks. ( hüppekoht, kõrvaldatav katkevuskoht, ................................................... 3 17. Teist liiki katkevuspunkt - arvu a nimetatakse funktsiooni y = f(x) teist liiki katkevuspunktiks, kui lim f(x); x a - on lõpmatu või ei eksisteeri ............................................ 4 20. Diferentseeruv funktsioon - kui funktsioonil y = f(x) on tuletis punktis x = x0, siis ütleme, et funktsioon on diferentseeruv punktis x0. Kui funktsioon on aga diferentseeruv mingi piirkonna igas punktis, öeldakse, et funktsioon on diferentseeruv selles piirkonnas. ..................................... 4 1. Arvuhulgad: naturaal-, täis-, ratsionaal-, reaal- ja kompleksarvud. Nende omadused. ...............6 2

Matemaatika
118 allalaadimist
thumbnail
156
pdf

Kõrgem matemaatika

. . . . . . . . . . . . . . . . 29 3.5 Põhilised elementaarfunktsioonid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 SISUKORD 3.6 Elementaarfunktsioonid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.7 Jadad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4 Funktsiooni piirväärtus ja pidevus 37 4.1 Jada piirväärtus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.2 Funktsiooni piirväärtuse mõiste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.3 Ühepoolsed piirväärtused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.4 Funktsiooni piirväärtuse omadused . . . . . . . . .

Kõrgem matemaatika
94 allalaadimist
thumbnail
39
pdf

Matemaatiline analüüs I konspekt -Tõkestatud hulgad

Areakootangens y = arcth x X = (- ,1) (1, ) Y = (- ,0 ) (0, ) y = arsh x y = arch x y = arth x y = arcth x 6 Kordamine matemaatilise analüüsi I eksamiks matemaatika-informaatika teaduskonnas 04/05 õ.a II PIIRVÄÄRTUS Piirväärtuse mõiste Jada piirväärtus Jada ( x n ) võib vaadelda kui funktsioni f , mis on antud valemiga f (n ) = x n , kus n N , s.o. kui funktsiooni f , mille määramispiirkond X = N. 1. Jada (lõplik) piirväärtus Definitsioon: Arvu a nimetatakse jada ( x n ) piirväärtuseks, kui iga arvu > 0 korral leidub selline arv N = N ( ) , et kehtib võrratus x n - a < , alati kui n > N , ja kirjutatakse lim x n = a

Matemaatiline analüüs I
73 allalaadimist
thumbnail
142
pdf

Matemaatilise analüüsi konspekt TTÜ's

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.8 L~opmatult kahanevate ja l~opmatult kasvavate suuruste v~ordlemine. 43 2.9 Funktsiooni pidevus. Katkevuspunktide liigitus. . . . . . . . . . . 45 ¨ 2.10 Uhepoolne pidevus. Pidevus hulkadel. Elementaarfunktsioonide pidevus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.11 L~oigul pidevate funktsioonide omadusi. . . . . . . . . . . . . . . . 52 3 Tuletis ja diferentsiaal 57 3.1 Tuletise, diferentseeruva funktsiooni ja diferentsiaali m~oisted. . . 57 3.2 N¨aiteid tuletiste kohta rakendustes. . . . . . . . . . . . . . . . . . 60 3.3 Tuletiste arvutamise p~ohireeglid . . . . . . . . . . . . . . . . . . . 61 3.4 Ilmutamata funktsiooni, p¨o¨ordfunktsiooni ja parameetrilise funk- tsiooni diferentseerimine. . . . . . . . . . . . . . . . . . . . . . . . 62

Matemaatiline analüüs
47 allalaadimist
thumbnail
142
pdf

Matemaatiline analüüs I

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.8 L~opmatult kahanevate ja l~opmatult kasvavate suuruste v~ordlemine. 43 2.9 Funktsiooni pidevus. Katkevuspunktide liigitus. . . . . . . . . . . 45 ¨ 2.10 Uhepoolne pidevus. Pidevus hulkadel. Elementaarfunktsioonide pidevus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.11 L~oigul pidevate funktsioonide omadusi. . . . . . . . . . . . . . . . 52 3 Tuletis ja diferentsiaal 57 3.1 Tuletise, diferentseeruva funktsiooni ja diferentsiaali m~oisted. . . 57 3.2 N¨aiteid tuletiste kohta rakendustes. . . . . . . . . . . . . . . . . . 60 3.3 Tuletiste arvutamise p~ohireeglid . . . . . . . . . . . . . . . . . . . 61 3.4 Ilmutamata funktsiooni, p¨o¨ordfunktsiooni ja parameetrilise funk- tsiooni diferentseerimine. . . . . . . . . . . . . . . . . . . . . . . . 62

Matemaatika
42 allalaadimist
thumbnail
36
pdf

Matemaatiline analüüs

Matemaatiline analüüs 23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu ∆x suhtes, kui ∆x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. Funktsiooni muudu esitus: ∆y = f’(a)∆x + β , kus β = r(∆x)∆x Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu ∆ x suhtes, kui ∆ x läheneb nullile? (tõestada!). funktsiooni muut ∆y koosneb kahest liidetavast, millest esimene on diferentsiaal dy = f’(a)∆x ja teine on β. Mõlemad liidetavad on lõpmatult kahanevad protsessis ∆x → 0. Võrdleme neid suurusi ∆x suhtes. Esiteks, eelduse f’(a)  0 põhjal saame lim dy ∆x= lim f’(a)/∆x* ∆x= lim f’(a) = f(a)  0. ∆x→0 ∆x→0 ∆x→0 Teiseks kehtib

Matemaatiline analüüs 1
13 allalaadimist
thumbnail
273
pdf

Lembit Pallase materjalid

11. Funktsiooni pidevuse m~oiste. Tarvilik ja piisav tingimus funktsiooni pidevuseks 12. Elementaarfunktsioonide pidevus 13. L~oigul pidevate funktsioonide omadused 14. Funktsiooni katkevuspunktid 15. Funktsiooni tuletise m~oiste, selle geomeetriline ja mehhaaniline t~olgendus 1 16. Pidevus ja diferentseeruvus 17. M~onede p~ohiliste elementaarfunktsioonide tuletised 18. Diferentseerimisreeglid 19. P¨o¨ordfunktsiooni tuletis 20. Liitfunktsiooni tuletis 21. Logaritmiline diferentseerimine 22. Ilmutamata funktsiooni tuletis 23. Parameetrilisel kujul esitatud funktsiooni tuletis 24. Funktsiooni diferentsiaal 25. K~orgemat j¨arku tuletised 26. Joone puutuja ja normaali v~orrandid 27. Rolle'i teoreem 28. Cauchy teoreem 29. Lagrange'i teoreem 30. L'Hospitali reegel 31. L'Hospitali reegel teistel m¨aa¨ramatuse juhtudel 32. Taylori valem 33

Matemaatiline analüüs
808 allalaadimist
thumbnail
26
doc

Matemaatiline analüüs I - kordamine eksamiks

Kõigi ratsionaalarvude hulga tähistame sümboliga Q. Ratsionaalarvudeks on parajasti need arvud, mis on esitatavad lõplike või lõpmatute perioodiliste kümnendmurdudena. Arve, mis on esitatavad lõpmatute mitteperioodiliste kümnendmurdudena, nimetatakse irratsionaalarvudeks. Kõik ratsionaalarvud ja irratsionaalarvud moodustavad reaalarvude hulga. Kõigi reaalarvude hulga tähistame sümboliga R. Iga lõplikku kümnendmurdu a= , 12 ...n saab esitada lõpmatu kümnendmurruna kahel viisil: a = , 12 ...n 00... või a = , 12 ...(n -1)99... . Edaspidi välistame kümnendmurru esitamise kujul, mis lõpeb numbriga 9 perioodis. See eeldus võimaldab hõlpsamini defineerida reaalarvude võrdlemise eeskirjad. Seega reaalarvudeks nimetame kõiki lõpmatuid kümnendmurde, mis ei lõpe numbriga 9 perioodis. Reaalarvude võrdlemine Reaalarve a = , 12 ...n ... ja b = , 1 2 ...n ... nimetame võrdseteks, kui a = b, i = i , i = 1,2, ....

Matemaatiline analüüs i
687 allalaadimist
thumbnail
18
docx

Matemaatiline analüüs KT2 vastused

23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. Funktsiooni muudu peaosa ja jääkliige. Olgu antud funktsioon, mis on diferentseeruv punktis a. Eeldame, et f(a)0 kasutades mõisteid: x = x - a - argumendi muut kohal a y = f(x) - f(a) - funktsiooni muut kohal a . Näitasime, et Seega kui tähistame ja f'(a) vahe järgmiselt : Kehtib võrdus Püüame avaldada funktsiooni muutu y argumendi muudu x kaudu. Selleks

Matemaatiline analüüs I
120 allalaadimist
thumbnail
3
docx

Matemaatiline analüüs 1

Arvutame lim(x0)?sinx/x?. Elementaarfunktsioon sinx/x ei ole x = 0 korral määratud (tekib määramatus y = f(x) - f(a) - funktsiooni muut kohal a . 0/0). Piirväärtuse arvutamisel kasutame l'Hospitali reeglit: Näitasime, et 27Olgu funktsioon y = f(x) diferentseeruv hulgas D. Siis on tema tuletis f hulgas D määratud funktsioon. Oletame, et f on samuti diferentseeruv hulgas D. Siis saame me arvutada funktsiooni f tuletise ehk funktsiooni f teise tuletise, mida tähistatakse f. Seda protseduuri võib jätkata

Matemaatiline analüüs 1
66 allalaadimist
thumbnail
16
doc

Kordamisküsimused - vastused

ruumi Rm+1 alamhulka ={(x1,x2,...,xm,f(x1,x2,...,xm))||P(x1,x2,...,xm)D} 2. Nivoojooned ja pinnad Kahemuutuja funktsiooni z=f(x,y) nivoojooneks nimetatakse joont, mille moodustavad piirkonna D punktid (x,y) mille korral f(x,y)=C, kus C on etteantud konstant Skalaarvälja f ehk funktsiooni f nivoopinnaks nimetatakse pinda, mis koosneb piirkonna D punktidest (x,y,z) mille korral f(x,y,z)=C, kus C on etteantud konstant. 3. Mitme muutuja funktsiooni piirväärtus ja pidevus Mitmemuutuja funktsiooni piirväärtus m-muutuja funktsioonil f on piirväärtus b punktis A kui suvalises piirprotsessis PA, mis rahuldab tingimust PA, funktsiooni väärtus f(P) läheneb arvule b Mitmemuutuja funktsiooni pidevus Olgu antud mitmemuutuja funktsioon z=f(P) määramispiirkonnaga D. Funktsiooni f nimetatakse pidevaks punktis A kui AD; eksisteerib piirväärtus lim f ( P ) ; lim f ( P ) = f ( A) PA PA

Matemaatiline analüüs 2
511 allalaadimist
thumbnail
8
docx

Matemaatiline analüüs I 2. teooria KT vastused

TÕESTUSED, TULETUSKÄIGUD, PÕHJENDUSED!!! 23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana y = f'(a)x + , kus = r(x)x Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). funktsiooni muut y koosneb kahest liidetavast, millest esimene on diferentsiaal dy = f'(a)x ja teine on . M~olemad liidetavad on l~opmatult kahanevad protsessis x 0. V~ordleme neid suurusi x suhtes. Esiteks, eelduse f'(a) 0 p~ohjal saame lim dy x= lim f'(a)/x* x= lim f'(a) = f(a) 0. x0 x0 x0 Teiseks kehtib lim / x = lim r(x)x /x = lim r(x) = 0. x0 x0 x0 N¨aeme, et esimene liidetav, so diferentsiaal dy on sama j¨arku l~opmatult kahanev suurus kui

Matemaatika
46 allalaadimist
thumbnail
5
doc

Matemaatilise analüüsi 2.kollokviumi

Tähistame = x + y Siis 0 x 0 ja y 0.Tingimusest saame kahe muutuja pidevuseks f(x+ x) = f(x) + fxj(x+ x) xj punktis P0(x0 , y0) tarviliku ja piisava tingimuse lim z = 0.Vektorite ~u = (u1; u2; : : : ; um) ja ~v = (v1; v2; : : : ; vm) 0 skalaarkorrutiseks nimetatakse summat ~u * ~v = u1v1 + u2v2 + : : : + umvm : Defineerida funktsiooni tuletis etteantud suunas. Gradient. Telgedesuunalised tuletised. Suunatuletise tõlgendus. Leiame funktsiooni f(x) tuletise punktis a vektori s suunas. Vektori s suunaline ühikvektor on kujul n := s / s2 = (cos , ... , cos

Matemaatiline analüüs 2
37 allalaadimist
thumbnail
32
pdf

Matemaatiline analüüs II konspekt - MITME MUUTUJA FUNKTSIOONID

Kirjutame: z = f (P ) või z = f ( x1 ,..., x m ) Hulka D nimetatakse funktsiooni f määramispiirkonnaks. Funktsiooni z = f (P ) loomulikuks määramispiirkonnaks nimetatakse punktide P hulka, mille korral funktsiooni määrav eeskiri omab mõtet. Def. M-muutuja funktsiooni f graafikuks nimetatakse hulka { ( f ) = ( x1 ,..., x m , z ) R m +1 : ( x1 ,..., x m ) R m , z = f ( x1 ,..., x m ) . } 3. Mitme muutuja funktsiooni piirväärtus Olgu antud funktsioon z = f (P ) = f (x1 ,..., x m ) P D ja punkt A D D . Def. Arvu nimetatakse funktsiooni z = f (P ) piirväärtuseks punktis A , kui iga arvu > 0 korral leidub niisugune arv ( ) > 0 nii, et kehtib võrratus f (P ) - < alati kui 0 < d (P, A) < . Kirjutame: lim f (P ) = või lim f (x1 ,..., x m ) = või f (P ) kui P A

Matemaatiline analüüs II
187 allalaadimist
thumbnail
11
doc

Määratud integraal

Trapetsiga on sarnasus: kahe vastaskülje paralleelsus. y M A X B y = f(x) m P P 0 a x x+x b x Märgime x teljel punkti x ja vaatleme kõverjoonelist trapetsit axXA. Tähistame trapetsi pindala tähega S. Pindala S sõltub x-st, igale kindlale x väärtusele vastab pindala P kindel väärtus, seega pindala S on x funktsioon S = S(x). Seda funktsiooni nimetatakse pindfunktsiooniks. Def Pindfunktsioon on fikseeritud alguse ja muutuva lõpuga kõverjoonse trapetsi pindala funktsiooni y = f ( x ) graafiku all. P Leiame pindfunktsiooni tuletise P ' = lim .

Kõrgem matemaatika
181 allalaadimist
thumbnail
11
pdf

Määratud integraal

Trapetsiga on sarnasus: kahe vastaskülje paralleelsus. y M A X B y = f(x) m P P 0 a x x+x b x Märgime x teljel punkti x ja vaatleme kõverjoonelist trapetsit axXA. Tähistame trapetsi pindala tähega S. Pindala S sõltub x-st, igale kindlale x väärtusele vastab pindala S kindel väärtus, seega pindala S on x funktsioon S = S(x). Seda funktsiooni nimetatakse pindfunktsiooniks. Def Pindfunktsioon on fikseeritud alguse ja muutuva lõpuga kõverjoonse trapetsi pindala funktsiooni y = f ( x ) graafiku all. S Leiame pindfunktsiooni tuletise S ' = lim .

Matemaatika
66 allalaadimist
thumbnail
21
docx

Matemaatiline analüüs 1, teine teooriatöö kordamisküsimused

23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana y ' =f ( a ) +r ( x ) x Korrutame saadud avaldise x-ga ja saame y=f ' ( a ) x+ , kus =r ( x ) x Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (Tõestada) ' lim f ( a ) x dy lim r ( x ) x =¿ x o = lim f ' ( a )=f ' ( a ) 0 x x x o lim = x o = lim r ( x ) =0 lim ¿ x o x x x o x o

Matemaatika
9 allalaadimist
thumbnail
177
pdf

ÜHE MUUTUJA MATEMAATILINE ANALÜÜS

. . . . . . . . . . . . 33 2.1.4 Tähtsad piirväärtused . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2 Koonduvuseteooria neli printsiipi . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2.1 Monotoonsuseprintsiip . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2.2 Bolzano–Weierstrassi teoreem . . . . . . . . . . . . . . . . . . . . . . 36 2.2.3 Cauchy kriteerium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2.4 Cantori teoreem üksteisesse sisestatud lõikudest . . . . . . . . . . . . 38 2.2.5 Reaalarvu kümnendesitus . . . . . . . . . . . . . . . . . . . . . . . . 39 2.2.6 Arv e . . . . . . . . . . . . . . . . . . . .

Algebra I
8 allalaadimist
thumbnail
14
pdf

Matemaatiline analüüs II

muutuja funktsiooniks. Geom ­ hüperpind n+1-mõõtmelises ruumis. Füüsikaliselt on nMF skalaarväli. Def: funktsiooni w=f(P), P Rn MP-ks nim nende punktide hulka, mille puhul funktsiooni väärtus on lõplik. MP={P(x1,...,xn) Rn | w=f(P) f(x1,...,xn) < } Rn Def: nivoopinnad on MP-a niisuguste punktide hulk, kus funktsiooni väärtus on konstantne. f(P)=const. Lause1. nivoojoonad ei lõiku, aga iga punkti läbib kindlasti nivoopind. Mitme muutuja funktsiooni piirväärtus. Pidevus Def: PKA lim K x Kii = i ; P(xki), A(ai), i=1,...,n Def: arv on funktsiooni f(P) piirväärtuseks protsessis, kus PKA, sel korral kui vastavalt igale epsiloni väärtusele leidub delta epsilon, et funktsiooni |f(P) ­ | on väiksem kui delta epsilon, niipea kui punktide,|PK A| < epsilonist, vaheline kaugus on väiksem kui epsilon. lim K f ( PK ) = Kordne piirväärtus! Def: funktsioon f(P) on pidev sel korral, kui funktsiooni piirväärtus,protsessis PA, on võrdne f(A).

Matemaatiline analüüs 2
336 allalaadimist
thumbnail
54
doc

Valemid ja mõisted

Y = - ; . 2 2 Joon. 19 29 x , kui x 0 18. Funktsioon y = x ehk y = (joon. 20), paarisfunktsioon. - x , kui x < 0 Joon. 20 30 4.3 Arvjada piirväärtus Olgu arvjada üldliige an . Arvu a nimetatakse arvjada piirväärtuseks, kui iga selle arvu ümbruse jaoks leidub niisugune järjekorranumber N, millest alates jada kõik liikmed kuuluvad sellesse ümbrusesse. Arvjada piirväärtust tähistatakse an a või lim an = a . n Jadade, üldliikmega an ja bn , korral: 1) lim n ( an ± bn ) = nlim

Matemaatika
1099 allalaadimist
thumbnail
5
docx

Teine osaeksam, matemaatiline analüüs I, teooriaküsimused

Matemaatilise analüüsi (I) II osaeksami teooriaküsimused (Tallinnas õppivatele kaugõppijatele) 1. Funktsiooni muudu peaosa ja funktsiooni diferentsiaal. Sõltumatu muutuja diferentsiaal. Funktsiooni diferentsiaali valem. Ligikaudse arvutamise valem. Funktsiooni muut y koosneb kahest liidetavast, millest esimene [kui f ( x ) 0 ] on muudu niinimetatud peaosa, mis on võrdeline argumendi muuduga x . Korrutist f ( x ) x nimetatakse funktsiooni diferentsiaaliks ja tähistatakse sümboliga dy või df ( x ) . Sõltumatu muutuja x diferentsiaal dx ühtib tema muuduga x . dy

Matemaatika analüüs I
147 allalaadimist
thumbnail
1080
pdf

Matemaatiline analüüs terve konspekt

Jada piirva¨ artus. ¨ Arv e. Funktsiooni piirva¨ artus. ¨ Joone asumptoodid. ¨ ~ Lopmata ¨ vaikesed ja ~ lopmata ~ suured suurused. Funktsiooni pidevus. Loigul pidevate funktsioonide omadused. Funktsiooni tuletis. Liitfunktsiooni tuletis. Po¨ ordfunktsiooni ¨ tuletis. Parameetri-liselt esitatud funktsiooni tuletis. Ilmutamata ~ funktsiooni tuletis. Logaritmiline diferentseerimine. Pohiliste elementaarfunktsioonide tuletised. ~ Korgemat ¨ jarku tuletised. Leibnizi valem. Funktsiooni diferentsiaalid. Funktsiooni kasvamine ja kahanemine

Matemaatiline analüüs 1
136 allalaadimist
thumbnail
16
docx

J. Kurvitsa teooria vastused

1. Kollokvium 1. Hulga mõiste. Järjestatud hulk. Tehted hulkadega. Arvuhulgad. Teoreem. Ei leidu ratsionaalarvu, mille ruut on 2 (tõestada). Tõkestatud hulgad (näide). Tõkestamata hulgad (näide). Hulk koosneb elementidest, kusjuures elemendid ei kordu ja nende järjestus ei ole kindlaks määratud. Järjestatud hulk koosneb samuti elementidest, kuid selles hulgas on iga kahe elemendi kohta võimalik öelda, kumb neist on eelnev, kumb järgnev. Tehted hulkadega: * Hulkade A ja B ühendiks ehk summaks nimetatakse hulka, mille moodustavad kõik kas

Matemaatiline analüüs
195 allalaadimist
thumbnail
108
doc

MATEMAATIKA TÄIENDÕPE: Valemid

   Y   ;  .  2 2 Joon. 19 29  x , kui x  0 18. Funktsioon y  x ehk y   (joon. 20), paarisfunktsioon.   x , kui x  0 Joon. 20 30 4.3 Arvjada piirväärtus Olgu arvjada üldliige an . Arvu a nimetatakse arvjada piirväärtuseks, kui iga selle arvu

Algebra I
60 allalaadimist
thumbnail
13
doc

Matemaatiline analüüs 1 kordaisküsimuste vastused

korrutis on tõkestamatult kahanev a)cx->tõkestamatult kahanev b)kahe tõkestamatult kahaneva suuruse korrutis on samuti tõkestamatult kahanev *Kasvav: *def.1 suurus x:x1,x2,x3...xn=f(n)...on tõkestamatult kasvav, kui igale pos arvule M, leidub niisugune indeks N IN, mille korral |xn|>M, n>N; arvtelg (xN+2, -M, x1, 0,x2,M,xN+1), Lause: tõkestamatult kasvav suurus x, siis tema pöörväärtus 1/x tõkestamatult kahanev ja vastupidi 7. Muutuva suuruse piirväärtus Suurus x: x1,x2,x3...,xn,..=> def. Arv a on suuruse xn piirväärtus protsessis, kus n läheneb sel korral, kui xn-a on tõkestamatult kahanev suurus, limn-> xn=a, xn-a= n *Kui suurusel piirväärtus on olemas, siis kehtib seos, et xn- a on tõkestamatult kahanev , siis saame xn=a+ n tõkestamatult kah suurus *Kui meil see vahe on tõkes kah siis iga puhul leidub N IN, mille korral | xn-a|< , n>N; arvtelg(x1,0,a- ,xN+1(üles),a,a+ ,x2(üles)) .*Järeldus 1)tõk kah

Kõrgem matemaatika
147 allalaadimist
thumbnail
11
doc

Matemaatiline analüüs - konspekt II

32. Lokaalse ekstreemumi piisavad tingimused: tingimus I. Olgu x1 funktsiooni f kriitiline punkt. Kui läbides punkti x1 vasakult paremale funktsiooni tuletise märk muutub plussist miinuseks siis on funktsioonil selles punktis lokaalne maksimum. Kui aga läbides punkti x1 vasakult paremale funktsiooni tuletise märk muutub miinusest plussiks siis on funktsioonil selles punktis lokaalne miinimum. Kui funktsioonil eksisteerib teist järku tuletis siis saab lokaalsete ekstreemumite olemasolu kontrollida ka selle abil. Nimelt maksimumpunkti läbides vasakult paremale funktsiooni graafiku puutuja tõus väheneb. See tähendab et funktsiooni tuletis kahaneb. Funktsiooni tuletis kahaneb aga juhul kui teine tuletis on negatiivne. Seevastu miinimupunkti läbides puutuja tõus suureneb, seega tuletis kasvab. Tuletis kasvab aga juhul kui teine tuletis on positiivne. Järelikult kehtib järgmine väide: Lokaalse ekstreemumi piisav tingimus II

Matemaatiline analüüs
350 allalaadimist
thumbnail
64
pdf

Kolokvium 1 materjal

siooni m¨ a¨aramispiirkonnast X, millele vastab kaks erinevat funktsiooni v¨a¨artust y1 ja y2 , ning ei leidu argumendi v¨ a¨artust, millele vastab rohkem kui kaks funktsiooni v¨a¨artust. Tavaliselt t~ olgendatakse mitmest funktsiooni u¨heste funktsioonide (mitmese funkt- siooni harude) komplektina. J¨ argnevalt, k~oneldes funktsioonist, eeldame vaikimisi, et tegemist on u¨hese funktsiooniga. N¨ aide 1. Vaatleme funktsiooni y = x2 , kus X = [-1; 1], mille graafik on kujutatud joonisel 0.8 0.6 y 0.4 0.2 -1

Matemaatiline analüüs
65 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun