Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

Analüütilise geomeetria valemid - sarnased materjalid

vektor, ellips, hüperbool, üldvõrrand, fookus, imaginaarne, skalaar, vektorkorrutis, parabool, kanooniline, teljega, elliptiline, skalaarkorrutis, moodul, uurimine, ringjoon, ekstsentrilisus, sirged, asetse, diskriminant, lüke, ellipsoid, tasandite, hüperboloid, tasandid, paraboloid, vektorid, võrrandid, asümptoodid, kooniline, kollineaarsus
thumbnail
10
doc

Analüütilise geomeetria valemid

AM x + x B y + y B 9. Lõigu jaotamine antud suhtes = , ( xM = A ; yM = A ;...) MB 1+ 1+ x + x2 y + y2 z + z2 10. Lõigu poolitamine x K = 1 ; yK = 1 ; zK = 1 2 2 2 11. Kahe vektori skalaarkorrutis on skalaar, mis võrdub nende vektorite moodulite ja nende vektorite vahelise nurga koosinuse korrutisega. a b = a b cos a b 12. a b = a pra b = b prb a , millest prb a = b 13. skalaarruut aa = |a| 2 a = a2 a b X 1 X 2 + Y1Y2 + Z 1 Z 2 14

Analüütiline geomeetria
39 allalaadimist
thumbnail
24
doc

ANALÜÜTILINE GEOMEETRIA RUUMIS, VEKTORID

Lineaarteheteks vektoritega on vektorite liitmine, vektorite lahutamine, vektori korrutamine arvuga.    Definitsioon. Vektorite a ja b summaks nimetatakse vektorit c  a  b , mille alguspunkt langeb    kokku vektori a alguspunktiga ja lõpp-punkt vektori b lõpp-punktiga eeldusel, et vektor b on  rakendatud vektori a lõpp-punkti. Kahe vektori korral kehtib rööpküliku reegel. Seda definitsiooni on võimalik üldistada suvalise lõpliku arvu vektorite jaoks.     Definitsioon. Vektorite a ja b vaheks nimetatakse vektorit a  b , mis on võrdne summaga a  b  a   b  .    

Matemaatika
38 allalaadimist
thumbnail
26
docx

Lineaaralgebra eksami kordamisküsimused vastused

Nullvektori suund on määramata. 5. Ühikvektor- Kui vektori pikkus on 1 6. vektorite liitmine-rööpkülikureegel: Vektorite a ja b summaks nimetatakse niisugust vektorit c, mis väljub nende ühisest alguspunktist ja on niisuguse rööpküliku diagonaal, mille külgedeks on liidetavad vektorid. Kolmnurga reegel-vektorite liitmisel viiakse teise liidetava alguspunkt esimese liidetava lõpp-punkti. Vektorite a ja b summaks on vektor mis kulgeb esimese liidetava alguspunktist teise liidetava lõpp-punkti. 7. vektorite lahutamine- Vektorite a ja b vaheks nimetatakse vektorit d, millel on omadus b+d=a. Kahe vektori vahe leidmiseks viikse nad ühisesse alguspunkti ja nende vahe on vektor, mis kulgeb vähendaja lõpp-punktist vähendatava lõpp-punkti. 8. vektori ja reaalarvu korrutis- vektori korrutiseks arvuga nimetatakse vektorit, mille pikkus võrdub arvu absoluutväärtuse ja lähivektori pikkuse

Matemaatiline analüüs 1
124 allalaadimist
thumbnail
5
doc

Crameri teoreem lineaarsete võrrandisüsteemide lahendamiseks

Vektori a pikkus on a ja tähistatakse |a| = a. Vektoreid a ja b nimetakse kollineaarseteks (a ||b), kui nad on paralleelsed sama sirgega. Kollineaarsed vektorid on kas samasuunalised a b või vastassuunalised a b. Vektoreid a ja b nimetatakse komplanaarseteks, kui nad on paralleelsed ühe ja sama tasandiga. Vektorid a ja b on võrdsed (on sama suured), a=b, kui nende pikkus on sama ja nad on samasuunalised Vektorite a ja b summa a+b on vektor, mille alguspunkt on a alguspunkt ja lõpp-punkt saadakse b paralleellükkega a lõpp-punkti, siis a+b lõpp-punkt on b lõpp-punkt. Tihti kasutatakse ka rööpküliku reeglit, kus vektorid a ja b pannakse paralleellükkega algama samast punktist. Summa on siis rööpküliku pikem diagonaal. a-b=a+(-b). Seega ahelreelgi järgi tuleks vektorite a ja b vaheks vektor a-b, mis saadakse a lõppu b vastasvektori ­b lisamisega. Rööpküliku reeglite järgi oleks vektorite a ja b vahe neile

Lineaaralgebra
177 allalaadimist
thumbnail
5
doc

algebra konspekt

Joonte parameetrilised võrrandid Joone parameetrilisteks võrranditeks ruumis nim võrandeid kujul x=x(t) y=y(t) z=z(t) kui esimene võrrand esitab x-i t-funktsioonina, teine võrrand esitab y-i ja kolmas z-i muutuja funktsioonina. Muutujat t nim parametriks. Tasandil nim joone parameetrilisteks võrranditeks võrrandeid x=x(t) y=y(t) Sirge parameetrilised võrrandid Sirge on täielikult määratud kui on teada nullist erinev sirgega paralleelne vektor, nn sirge sihivektor s ja üks punkt M1 sirgel. M on meelevaldne punkt sirgel, siis OM1=r1 ja OM=r. Punktid M1 ja M määravad vektori M1M=r-r1. See vektor on paralleelne sihivektoriga. Võrrand r-r1=st on sirge parameetriline võrrand vektorkujul. Võrrandit y= kx+b nim sirge võrrandiks tõusu ja algordinaadi järgi. Siin arv k on sirge tõus ehk x-telje positiivse suuna ja sirge vahelise nurga tangens. Arvu b nim sirge algordinaadiks.See on sirge ja y-telje lõikepunkti ordinaat.

Algebra ja Analüütiline...
131 allalaadimist
thumbnail
25
doc

Algebra ja geomeetria kordamine

. . , aik} nimetame vektorsüsteemi {a1, a2, . . . , am} alamsüsteemiks. Vektorsüsteemi lineaarne sõltuvus (sõltumatus) ­Vektorsüsteemi {a1, a2, . . . , am} nimetame lineaarselt sõltuvaks (lineaarselt sõltumatuks), kui vektorvõrrandil 1a1+ 2a2 + ... + mam on rohkem kui 1 lahend (on ainult 1 lahend) ?Tulemused lineaarse sõltuvuse kohta väikese elementide arvuga vektorsüsteemides ­ viimane tähendab seda, et kui vektorsüsteemis on 1 vektor, siis l-sõltuv on ainult siis kui see vektor on 0 vektor, kui 2 vektorit, siis l-sõltuv, kui need vektorid on kollineaarsed VEKTORRUUMI BAAS: Vektorruumi baas ­ Vektorsüsteemi {e1, e2, .... , en} nimetatakse vektorruumi V baasiks, kui: 1) see vektorsüsteem on lineaarselt sõltumatu; 2) vektorruumi V iga element on avaldatav selle vektorsüsteemi elementide kaudu. Lõpmatumõõtmeline vektorruum ­ Vektorruumi, millel puuduvad baasid, nimetatakse lõpmatumõõtmeliseks ehk lõpmatudimensionaalseks vektorruumiks

Algebra ja geomeetria
62 allalaadimist
thumbnail
54
doc

Valemid ja mõisted

1). 23 2. Võrdeline sõltuvus (joon. 1): y = kx , k = tan , 0 < , paaritu funktsioon. Määramispiirkond X = . 3. Lineaarfunktsioon (joon. 1): y = kx + b , k = tan , 0 < , ei paaris ega paaritu, kui b 0 . X = . y Joon. 1 4. Pöördvõrdeline sõltuvus (joon. 2): a y = , graafikuks on võrdhaarne hüperbool, asümptootideks on koordinaatteljed, x paaritu funktsioon. X = ( - ; 0 ) U ( 0 ; ) . Joon. 2 5. Ruutfunktsioon: y = x 2 , graafikuks on põhiparabool (joon. 6), paarisfunktsioon. X = . 24 y = ax 2 + bx + c (ka ruutpolünoom), graafikuks on parabool (joon. 3). X = . b x0 = -

Matemaatika
1099 allalaadimist
thumbnail
7
doc

Kõrgem matemaatika

Kõrgema matemaatika kordamisküsimused eksamiks 1. Kahe vektori skalaar- ja vektorkorrutis Vektoriks nim suunaga ja pikkusega sirglõiku. Tähistatakse , kus A ja B tähistavad vastavalt vektori algus- ja lõpp-punkti. Vektori mooduliks nim vektori pikkust. Tähistatakse . Ühikvektoriks nim vektorit, mille pikkus võrdub ühega. . Nullvektoriks nim vektorit, mille alguspunkt ja lõpppunkt ühtivad. . Vabavektoriks nim vektorit, mille alguspunkt ei ole fikseeritud, st vektori asendit võib paralleellükke abil muuta.

Kõrgem matemaatika
477 allalaadimist
thumbnail
8
doc

Kõrgema matemaatika kordamisküsimused ja vastused

2) Liitmine / lahutamine ­ liita/lahutada omavahel vastavad koordinaadid. 18. Kahe vektori skalaarkorrutis (mõiste, omadused, avaldis koordinaatides). Kahe vektori skalaarkorrutis ­ nim. nende vektorite pikkuste ja nendevahelise nurga koosiinuse korrutist. ab = |a||b|cos Omadused: 1) On arvuline suurus 2) ab = 0, kui a = 0 vôi b = 0 vôi a risti b 3) ab = 1, kui a || b Avaldis koordinaatides: a*b = (a1b1 + a2b2 + a3b3). 17. Kahe vektori vektorkorrutis (mõiste, omadused, avaldis koordinaatides). Kahe vektori vektorkorrutis ­ nim. vektorit, mille: 1) Pikkus on vôrdne nende vektorite pikkuste ja nendevahelise nurga siinuse korrutisega; 2) Siht on rist môlema vektoriga määratud tasandiga; 3) Suund on määratud Parema Käe ReegliTM järgi. Omadused: 1) Ei ole arvuline suurus; 2) ax b = 0, kui a = 0 vôi b = 0 vôi a || b; 3) ax b = |a||b|, kui a risti b . Avaldis koordinaatides:

Matemaatika
241 allalaadimist
thumbnail
108
doc

MATEMAATIKA TÄIENDÕPE: Valemid

2. Võrdeline sõltuvus (joon. 1): y  kx , k  tan  , 0     , paaritu funktsioon. Määramispiirkond X  ¡ . 3. Lineaarfunktsioon (joon. 1): y  kx  b , k  tan  , 0     , ei paaris ega paaritu, kui b  0 . X  ¡ . y Joon. 1 4. Pöördvõrdeline sõltuvus (joon. 2): a y  , graafikuks on võrdhaarne hüperbool, asümptootideks on koordinaatteljed, x paaritu funktsioon. X    ; 0  U  0 ;   . Joon. 2 5. Ruutfunktsioon: y  x 2 , graafikuks on põhiparabool (joon. 6), paarisfunktsioon. X  ¡ . 24 y  ax 2  bx  c (ka ruutpolünoom), graafikuks on parabool (joon. 3). X  ¡ .  b

Algebra I
60 allalaadimist
thumbnail
28
pdf

Lineaaralgebra ja analüütiline geomeetria konspekt

2016 aasta sügis) Ristkoordinaadid. Kui ruumis on antud ristkoordinaadisüsteem, siis ruumi iga punkt P on üheselt määrastud ristkoordinaatidega x, y, z, kus x on punkti P ristprojektsioon abstsissteljele, y on punkti P ristprojektsioon ordinaatteljele ja z on punkti P ristprojektsioon aplikaateljele. Kirjutame P(x, y, z). Kahe punkti vaheline kaugus. Kui P1(x1, y1, z1), P2(x2, y2, z2) on ruumi punktid, siis kaugus d punktide P1 ja P2 vahel on määratud valemiga Vektori mõiste Vektor on suunatud lõik alguspunktiga punktis A ja lõpp-punktiga punktis B. Nullvektor Eukleidilises ruumis (näiteks tasandil) on nullvektoriks määramata suunaga vektor, mille pikkus on null. Ühikvektor Kui vektori pikkus on 1, siis teda nimetatakse ühikvektoriks. Vektorite liitmine ja lahutamine Lahutamine toimub sama põhimõtte järgi. Reaalarvu ja vektori korrutis. Vektori pikkus Vektori pikkuseks loetakse sellele vektorile vastava sirglõigu AB pikkust

Algebra ja analüütiline...
105 allalaadimist
thumbnail
40
doc

Keskkooli matemaatika raudvara

...................29 Kolmnurga pindala valemid................................................................................................... 29 Siinusteoreem......................................................................................................................... 29 Koosinusteoreem.................................................................................................................... 30 IV Vektor tasandil...................................................................................................................... 30 Sissejuhatuseks....................................................................................................................... 30 Lõigu pikkus...........................................................................................................................31 Lõigu keskpunkti koordinaadid......................................................

Matemaatika
1453 allalaadimist
thumbnail
246
pdf

Funktsiooni graafik I õpik

Vektoriks nimetatakse suunatud sirglõiku. Vektorit iseloomustavateks suurusteks on siht, suund ja pikkus. Kui suunatud sirglõigu ehk vektori alguspunkt on A ja  lõpppunkt B, siis sellist vektorit tähistatakse AB . Vektoreid tähistatakse sageli ka ühe väiketähega,  näiteks a ning harvadel juhtudel mõnes õpikus või teatmeteoses ei märgita tähele noolt peale, siis tähistatakse vektor nii: a. Kaks vektorit on võrdsed, kui nad on samasihilised, samasuunalised ja ühepikkused. Kui vektori alguspunkt on y2 – y1 ja  lõpppunkt B(x2; y2), siis vektori AB koordinaadid on

Matemaatika
79 allalaadimist
thumbnail
81
pdf

Kõrgem matemaatika / lineaaralgebra

10. Kompleksarvu mõiste, imaginaarühik, kompleksarvu reaalosa ja imaginaarosa, kompleksarvude võrdsus, kaaskompleksarv. Kompleksarvude liitmise, korrutamise ja jagamise valemid. Kompleksarvu moodul, argument ja trigonomeetriline kuju. Kompleksarvu geomeetriline tõlgendus, Kaaskompleksarvude ja kompleksarvude summa geomeetriline tõlgendus. Trigonomeetrilisel kujul antud kompleksarvude korrutamise, jagamise, astendamise ja juurimise valemid. Juurte arv. 11. Geomeetriline vektor. Vektorite kollineaarsus, vektorite võrdsus. Nullvektor. Kolmnurka ja rööpküliku reegel. Lineaarsed tehted geomeetriliste vektoritega (liitmine ja skalaariga korrutamine). Lineaarsete tehete 8 omadust 12. Aritmeetiline vektor. Lineaarsed tehted aritmeetiliste vektoritega (liitmine ja skalaariga korrutamine). Aritmeetiline ruum. 13. Vektorruumi ja vektori definitsioon. Vektorruumi 5 näidet. Vektorite lineaarne kombinatsioon (näide geomeetriliste vektorite kohta)

Algebra I
198 allalaadimist
thumbnail
4
doc

Lineaar algebra teooria kokkuvõte

..+ alfn*an= SUM( i=1; n)alfi*ai= 0 kehtib vaid siis, kui kõik kordajad ai on nullid. Vektorite hulga lineaarse sõltuvuse tarvilik ja piisav tingimus. Vektorruumi baas ja mõõde. Vektori koordinaadid Vektorruumi lineaarselt sõltumate vektorite maximaalarvu nim vektorruumi mõõtmex ja tähistataxe dim V. n-mõõtmelise vektorruumi V^n suvalist n lineaarset sõltumatute vektorite hulka B = {e1,e2,..,en} nim vektor baasix. Iga vektor x V^n avaldub üheselt baasivektorite ei lineaarkombinatsioonina x= SUM(i=1;n) (xi *ei). Kordajad xi( i= 1,2,..,n) nim vektori x koordinaatidex antud baasil ja tähistataxe x=( x1,x2,....,xn). Sirge ja tasand ruumis Sirge vektorvõrrand nim vek) x= x0+ ts, kus t kuulub R => (x,y,z ) = (x0,y0,z0) +t(sx,sy,sz) =>parameetrilised võrrandid ja kanoonilised võrrandid => (x,y,z) = ( x0+tsx, y0+ tsy, z0+ tsz) => { x=

Lineaaralgebra
863 allalaadimist
thumbnail
24
rtf

Lineaaralgebra eksam

Need juured saadakse avaldisest z 1/n = r1/n(cos(( + 2k)/n) + isin(( + 2k)/n)) andes arvule k järjest väärtused 0, 1, ..., n-1 3. Korpuse defnitsioon. Skalaari mõiste. Korpuste näiteid. Korpuseks nimetatakse hulka K, kus on kaks tehet, + ja *, mis rahuldavad omadusi 1-9 Skalaariks nimetatakse mis tahes korpuse elemente. Korpuse näiteid: 1. Q, R, C 2. jäägiklassikorpus Zp (p - algarv); Zp {0, 1, ..., p-1} i, j Zp; ij = i+j, kui i+j <= p-1; i+j-p, kui i+j >= p 4. Geomeetriline vektor. Lineaarsed tehted geomeetriliste vektoritega ja nende omadused. Geomeetriline vektor on suunatud lõik tasandil või ruumis. Kahte geomeetrilist vektorit loetakse võrdseiks, kui need vektorid on kollineaarsed ( || ), samasuunalised ( ) ja ühepikkused (|||| = ||||) Lineaarsed tehted geomeetriliste vektoritega: 1. liitmine 2. skalaariga korrutamine (skalaaride hulgaks R). Korrutis rahuldab tingimusi: 1. c || ; 2. c >= 0 <=> c ; c < 0 <=> c ; 3. ||c|| = |c| * ||||;

Lineaaralgebra
197 allalaadimist
thumbnail
156
pdf

Kõrgem matemaatika

. . . . . . . . . . . . . . . . . 122 13.7 Vektorkorrutamine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 13.8 Segakorrutamine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 14 Sirge ja tasand ruumis 127 14.1 Tasandi vektorvõrrandid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 14.2 Tasandi üldvõrrand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 14.3 Sirge vektorvõrrandid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 14.4 Sirge võrrandid ruumis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 14.5 Punkti kaugus sirgeni . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 14.6 Punkti kaugus tasandini . . . . . . . . . . . . . . . . . . . . . . .

Kõrgem matemaatika
94 allalaadimist
thumbnail
22
doc

Kõrgem matemaatika

vastassuunalised (tähistus a b). Vektorit, mille alguspunkt ühtib selle vektori lõpp-punktiga, nimetatakse nullvektoriks. Kahte vektorit, mis erineved teineteisest vaid suuna poolest, nimetatakse vastandvektoreiks. 14. Vektori korrutamine arvuga (geomeetriliselt). Vektorite liitmine ja lahutamine (geomeetriliselt). vektori korrutamine arvuga: vektori korrutamisel arvuga suureneb tema pikkus võrdeliselt (siht ei muutu). kui kordaja on negatiivne, muutub vektor vastassuunaliseks. Geomeetrilise vektori a korrutiseks arvuga nimetatakse vektorit a, mis rahuldab tingimusi: vektorite liitmine ja lahutamine: Kolmurgareegel ­ liidetavad vektorid ühendada järjest ­ summavektor tõmmata esimese alguspunktist viimase lõppunkti; Rööpküliku reegel ­ liidetavate vektorite alguspunktid on samad, summavektor tuleb tômmata alguspunktist rööpküliku vastasnurka. lahutamine toimub vastandvektori liitmisel. 15

Kõrgem matemaatika
212 allalaadimist
thumbnail
13
doc

Kõrgema matemaatika eksam

teljeks. Ristkoordinaadistik ruumis: · Kolm ristuvat suunaga arvsirget; · Alguspuntkid ühtivad; · Ühikud on võrdsed. Punkti ristkoordinaadid ruumis - ­ (punkti koordinaatide saamiseks võtame ristprojektsioonid vastavatele telgedele) M(x;y;z) Mx(x), My(y), Mz(z). Seosed punkti rist- ja sfäärkoordinaatide vahel: 1) x 2) y 3) z = sin* 13. Geomeetrilise vektori mõiste, tähistused. Vektorite võrdsus. Kollineaarsed vektorid. Vektor ehk suunatud lõik ­ lõik, millel on määratud suund, siht ja suurus. Täh a=(a1;a2;a3) või AB=(a1;a2;a3). Vektorite võrdsus: vektoreid nim võrdseteks kui nad on kollineaarsed, samasuunalised ja võrdse pikkusega (võivad erineda vaid alguspunktide poolest). Kollineaarsed vektorid: vektorid, mis asuvad ühel ja samal sirgel või paralleelsetel sirgetel (siht on sama, suund ja pikkus võivad olla erinevad). 14. Vektori korrutamine arvuga (geomeetriliselt)

Kõrgem matemaatika
356 allalaadimist
thumbnail
2
docx

Valemileht 10.klass

KORRUTAMISE ABIVALEMID (a+b)(a-b)=a²-b² - ruutude vahe valem (a+b)²=a²+2ab+b² - summa ruudu valem (a-b)²=a²-2ab+b² - vahe ruudu valem a³+b³=(a+b)(a² -ab+b²) - kuupide summa valem a³-b³=(a-b)(a² +ab+b²) - kuupide vahe valem (a+b)³=a³+3a²b+3ab²+b³ - summa kuubi valem (a-b)³=a³-3a²b+3ab²-b³ - vahe kuubi valem RUUTVÕRRAND x2 + px + q = 0 - taandatud ruutvõrand ; lahend ax2 + bx + c = 0 ­ taandamata ruutvõrrand ; lahend x1 + x2 = -p ; x1 · x2 = q - viete valemid. Kus x1 ja x2 on taandatud ruutvõrrandi lahendid. ax2 + bx + c ( ruutkolmliikme lahutamine teguriteks) : ax2 + bx + c = a(x-x1)(x-x2). x1 ja x2 ruutvõrrandi lahendid. DETERMINANDID = a ·d - c·b. = aei + cdh +bfg ­ gec ­ ahf ­dbi. TRIGONOMEETRIA PÕHISEOSED sin2 + cos2 = 1 1 + cot2 a = tan = tan a cot a =1 1+ tan2 a = TÄIENDUSNURGA VALEMID sin (90 - a) =cos a cos (90 - a) = sin a tan (90 - a) = 1/tan a = cot a cot (90 - a) = 1/cot a = tan a NEGATIIVSE

Matemaatika
533 allalaadimist
thumbnail
55
pdf

Matemaatiline analüüs II loengukonspekt

MATEMAATLINE ANALÜÜS II 1. KORDSED INTEGRAALID Kordame kõigepealt mõningaid teemasid Matemaatlise analüüsi I osast. 1.1 Kahe muutuja funktsioonid Kui Tasndi R 2 mingi piirkonna D igale punktile x, y D seatakse ühesel viisil vastavusse arv z, siis öeldakse, et piirkonnas D on määratud kahe muutuja funktsioon z f x, y . Piirkoda D nimetataksefunktsiooni f määramispiirkonnaks. See on mingi piirkond xy-tasandil. Näide 1. Poolsfääri z 1 x2 y 2 määramispiirkonnaks on ring x 2 y2 1. Funktsiooni z ln x y määramispiirkonnaks on pooltasand y x (sirgest y x ülespoole jääv tasandi osa: vaata joonist). Kahe muutja funktsioon ise esitab pinda xyz-ruumis (ruumis R 3 ). Näide 2. Funktsiooni z x2 y 2 graafikuks on pöördparaboloid (vaata allpool olevat joonist) Kahe muutuja funktsiooni f nivoojoonteks nimetatakse jooni f x, y c Näide 3. Tüüpiline näide nivoojoo

Matemaatiline analüüs II
69 allalaadimist
thumbnail
14
ppt

Sirge tasandil

(paralleelset) vektorit. Kui on teada sirge sihivektor s = ( s1 , s2 ) ja mingi punkt A(x1; y1) sellelt sirgelt, siis saab sirge võrrandi esitada kujul x - x1 y - y1 = . s1 s2 y s A(x1; y1) 0 x Sirge üldvõrrand Sirge üldvõrrandiks on kaht tundmatut sisaldav lineaarne võrrand kujul Ax + By + C = 0, kus kordajad A ja B ei ole korraga nullid. Mõningate spetsiifiliste sirgete võrrandid: x-teljega paralleelne sirge: y = b; y-teljega paralleelne sirge: x = a; nullpunkti läbiv sirge: y = kx; x-telg: y = 0; y-telg: x = 0.

Matemaatika
31 allalaadimist
thumbnail
2
docx

Sirged ja tasandid

. Nende sirgete kanoonilised võrrandid on siis x - x2 y - y 2 z - z 2 = = tx ty tz ja . 1. Sirged ühtivad, kui nende sihivektorid on kollineaarsed ja ka vektor AB on mõlema sihivektoriga kollineaarne. 2. Sirged on paralleelsed, kui nende sihivektorid on kollineaarsed, aga vektor AB ei ole kummagi sihivektoriga kollineaarne. 3. Sirged lõikuvad, kui nende sihivektorid ei ole kollineaarsed, aga sihivektorid ja

Matemaatika
64 allalaadimist
thumbnail
9
doc

Lineaarsete algebraliste võrrandite süsteem

Olgu vektorid a = ( a x , a y , a z ) = a x i + a y j + a z k ja b = (b x , b y , bz ) = bx i + b y j + bz k ning nendevaheline nurk Skalaarkorrutis a b = a x bx +a y b y +a z b z = a b cos Kui vektorid on risti, siis skalaarkorrutis on null. Vektorkorrutis on vektor, mis on risti mõlema korrutatava vektoriga. Kui vektorid on kollineaarsed (vektorite sihid paralleelsed, = 0 ), siis vektorkorrutis on nullvektor. Kui vektorid ei ole kollineaarsed, siis vektorkorrutis on risti vektorite sihilise tasapinnaga. Vektorkorrutis moodustab teguritega parema käe kolmiku. i j k

Matemaatika
74 allalaadimist
thumbnail
2
doc

Matemaatika valemid

Õppematerjalide loomist toetab AS Topauto/autod, markide Seat, Suzuki, Hyundai ning kasutatud autode müüja üle Eesti 3. Vektor tasandil. Joone võrrand Põhiteadmised · Punkti koordinaadid; · vektor, vektori koordinaadid; · vektorite summa ja vahe; · vektori korrutamine arvuga; · kahe vektori skalaarkorrutis; · vektori pikkus ja nurk vektorite vahel; · vektorite ristseisu ja kollineaarsuse tunnused; · joone võrrandi mõiste; · sirge võrrand tasandil; · kahe sirge vastastikused asendid; · ringjoone võrrand; · parabooli võrrand. Põhioskused · Tehete sooritamine vektoritega geomeetriliselt ja koordinaatkujul;

Matemaatika
113 allalaadimist
thumbnail
19
doc

Matemaatika valemid.

­ üks lahend A 2 B2 A 1 B1 C1 = ­ lahend puudub A 2 B2 C 2 A 1 B1 C1 = = ­ lõpmata palju lahendeid A 2 B2 C 2 3. Vektor tasandil. Joone võrrand · Lineaartehted vektoritega AB = ( x 2 - x 1 , y 2 - y1 ) kui A(x1; y1), B(x2; y2) OA = x 1 i + y1 j või a = ( x 1 ; y1 ), kui A( x 1 ; y1 ), O( 0; 0 ) i = (1; 0 ), j = ( 0; 1)

Matemaatika
807 allalaadimist
thumbnail
4
doc

Gümnaasiumi I astme valemid

ARVUHULGAD 1. Naturaalarvude hulk N = {1;2;3; ...}. 2. Positiivsete täisarvude hulk Z + = N. 3. Negatiivsete täisarvude hulk Z - = { -1; -2; -3; . . . }. 4. Täisarvude hulk Z = Z Z { 0}. + - a 5. Ratsionaalarvude hulk Q = aZ bZ b 0 b 6. Irratsionaalarvude hulga I moodustavad lõpmatud mitteperioodilised kümnendmurrud. 7. Reaalarvude hulk R = Q I. KORRUTAMISE ABIVALEMID 8. (a + b)(a + b) = a 2 - b 2 . 9. ( a ± b) 2 = a 2 ± 2ab + b 2 . 10. ( a ± b) 3 = a 3 ± 3a 2 b + 3ab 2 ± b 3 . 11. a 3 ± b 3 = ( a ± b)(a 2 ab + b 2 ) . ASTMED JA JUURED 12. Korrutise aste ( a b) = a b . n n n n a an 13. Jagatise aste = b bn 14. Võrdsete alustega astmete

Matemaatika
661 allalaadimist
thumbnail
4
doc

Valemid

ARVUHULGAD 1. Naturaalarvude hulk N = {1;2;3; ...}. 2. Positiivsete täisarvude hulk Z + = N. 3. Negatiivsete täisarvude hulk Z - = { -1; -2; -3; . . . }. 4. Täisarvude hulk Z = Z Z { 0}. + - a 5. Ratsionaalarvude hulk Q = aZ bZ b 0 b 6. Irratsionaalarvude hulga I moodustavad lõpmatud mitteperioodilised kümnendmurrud. 7. Reaalarvude hulk R = Q I. KORRUTAMISE ABIVALEMID 8. (a + b)(a + b) = a 2 - b 2 . 9. ( a ± b) 2 = a 2 ± 2ab + b 2 . 10. ( a ± b) 3 = a 3 ± 3a 2 b + 3ab 2 ± b 3 . 11. a 3 ± b 3 = ( a ± b)(a 2 ab + b 2 ) . ASTMED JA JUURED 12. Korrutise aste ( a b) = a b . n n n n a an 13. Jagatise aste = b bn 14. Võrdsete alustega astmete

Matemaatika
15 allalaadimist
thumbnail
9
docx

Lineaaralgebra

n n ,anname k väärtused (1,2,3....n-1) n n z= r ¿ 4) Vektorruumi mõiste, vahetud järeldused aksioomidest. Vektorruum on-mittetühi hulk V mille elementitega saab teha 2 tehet.1)liitmine-2le ( , V on )elemendile on pandud + V vastandisse. 2) skalaarkorrutamine- vastavuse elemet( C V on pandud arvule( C R ja hulga elemendile ( V ) .vektorruumi element-on vektor. 5) Vektorite lineaarne sõltuvus ja sõltumatus. Lineaarse s~oltuvuse tarvilik ja piisav tingimus. Lineaarne sõltuvus- Vektorruumi X(üle korpuse K) vektorite hulka nimetatakse lineaarselt sõltuvaks, kui Vektorruumi X(ülekorpuse K) mingit vektorite hulka nimetatakse lineaarselt sõltumatuks, kui ta ei ole lineaarselt sõltuv 6) Vektorruumi baas ja mõõde. Vektori koordinaadid. Tasnd- kasutatakse vektorruum pikkusega 1 =1

Matemaatiline analüüs 2
32 allalaadimist
thumbnail
5
docx

Lineaaralgebra Eksami küsimuste vastused

(1,2,3....n-1) 4. Geomeetrilised vektorid,lineaartehted ja nende omadused. Geomeetrilised vektorid on suunatud lõigud,a-algus punk,b-lõpp punkt( või ) on võrdsed kui need on,samasuunalised ja ühepikused.ruumis võib olla mis tahes punkt iga vektori ja p.A-le leidub p.B .kui vektori alg ja lõpp punk langevad kokku siis see on null-vektor.vektorite + = . lineaartehted­ on vektorite liitmine ja skalaar korrutmine omadused ­ , , (null vektor olemas olu), (vastand vektori olemas olu), , 5. Aritmeetilised vektorid lineaartehted ja skalaarkorrutis ja nende omadused. Aritmeetilised vektorid n-mõõtmeline aritm.vektor on n arvu(a1,a2,a3....an)kindlas jäjekorras.tähistatakse (.kõigi n-mõõtmelise vektorite this on . Lineaartehted kui p =(b1,b2,b3,...bn) ja CR. korrutis ) Omadused iga ­ , , leidub ,et null vektor, iga leidub vastand vektor ka , , (ab)=a() , 1* Skalaarkorrutis on arv ­

Lineaaralgebra
950 allalaadimist
thumbnail
7
doc

Matemaatika valemid kl 10-11 12 tõenäosus

4R 34. Vekor tasandil. Joone võrrand. Punkti koordinaadid tasandil A2x + B2 y + C2 = 0 y-telg ­ ordinaat x-telg ­ abstsiss 35. Kahe punkti vaheline kaugus d = ( x 2 - x1 ) + ( y 2 - y1 ) 48. Ringjoone võrrand 2 2 36. Vektor. Tehted vektoritega a b ( x - a ) 2 + ( y - b) 2 = R2 49. Fn-ide graafikud 37. Vektorite liitmine · Lineaar u + v = ( x1 + x 2 ; y1 + y 2 ) y = ax + b 38

Matemaatika
1299 allalaadimist
thumbnail
3
doc

Matemaatika valemid

· Variatsioonirea ulatus · Hälve ­ e lemendi erinevus aritmeetiliselst keskmisest (d=|x-x|) · Keskmine hälve ­ kõigi hälvete summa ja reamahu jagatis · Dispersioon ­ hälvete ruutude keskmine · Standard hälve ­ ruutjuur dispersioonist Sirge tõus on tõusunurga tangens. Siis kui x kordaja on +, siis sirge tõuseb. x-x1/x2-x1=y-y1/y2-y1 x-x1/v1=y-y1/y2 y=ax+b (a ­ sirge tõus; b ­ algordinaat) y-y1=a(x-x1) Ax+By+C=0 ­ üldvõrrand Sirged kattuvad s=t (võrrandid on samad) A1/A2=B1/B=C1/C2 Sirged on paralleelsed s||t (tõusud on võrdsed) A1/A2=B1/BC1/C2 Sirged lõikuvad (tõusud erinevad, risti on kui tõusude korrutis on ­1) a1a2 Vektor on suunaga lõik, millel on alguspunkt (rakenduspunkt) ja lõpppunkt. Igal sihil on kaks suunda. Paralleelsetel sirgetel on sama siht. Vektoreid tähistatakse kas 2 suure tähega või 1 väikse tähega. AB vastandvektor on BA; v vastandvektor on ­v

Matemaatika
1750 allalaadimist
thumbnail
13
doc

Matemaatiline analüüs 1 kordaisküsimuste vastused

1. Muutuvad suurused. Def. 1 *Suurusi, mis omand erinevaid väärtusi(vaadeldavas protsessis) nim muutuvateks suurusteks. *Suurusi, mis omand. konstantseid püsivaid väärtusi nim jäävateks suurusteks e. konstantideks. *Tähistus: x,y,z...u,v,w,t *NT ühtlane liikumine-> kiirus konstantne v, teepikkus ja aeg muutuvad *Muutuvad suurused on tavaliselt reaalarvud-> geom võime esitada sirgel *absoluutsed konstandid- mistahes protsessis vaadeldavad suurused: =3,14..., e =2,71 1. väärtused on diskreetsed x: x1,x2,x3 (arvjada) 2. väärtused omand pideva alamhulga reaalteljel (+joonised!): *X={x IR|axib} lõik * X={x IR|a0 (joonis) 2. Funktsiooni mõiste Olgu antud 2 suurust x-muutumisp. X, y-muutumisp. Y *Def.1 Me nim funktsiooniks kujutust, mis seab igale x väärtusele piirkonnas X vastavusse suuruse y kindl

Kõrgem matemaatika
147 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun