1. Reaalarvud ja avaldised a, kui a 0 · Arvu absoluutväärtus a = - a, kui a < 0 · Astme mõiste ja omadused a 0 = 1, kui a 0 a1 = a a n = a a a a, kui n N 2 1 a-k = , kui a 0 ja k Z või ak kui a > 0 ja k Q m n a m , kui a > 0, m Z ja n N a = n 2 0, kui a = 0, m N 1 ja n N1
sin2 + cos2 = 1 tan = sin /cos 1+tan2 = 1/cos2 sin2 = 1 cos2 sin = tan *cos cos2 = 1/tan2 +1 cos2 = 1 sin2 cos = sin /tan cos2 1 = - sin2 cot = cos /sin cot =1/tan sin2 1 = - cos2 cos = cot *sin tan *cot =1 sin = cos /cot 1+cot2 = 1/sin2 sin = cos (90o ) sin = vastas kaatet/hüpotenuus cos = sin (90o ) cos = lähis kaatet/hüpotenuus tan = 1/tan (90o ) tan = vastas kaatet/lähis kaatet cot =tan (90o ) cot = lähis kaatet/vastas kaatet tan = cot (90o ) Kolmnurga pindala Koosinusteoreem Siinusteoreem S=a*h/2 a2=b2+c2-2bc*cos a/sin=b/sin=c/sin=2R S=1/2a*b*
Romb Rööpkülik Trapets Täisnurkne kolmnurk Sirge tasandil Siinusteoreem Vektor Silinder Püstprisma Kolmnurka pindala Koonus Korrapärane püramiid Aritmeetiline jada Geomeetriline jada Kera Hääbuv geomeetriline jada Liitprotsent
Aritmeetiline jada: an = a1+(n-1)d d = an-an-1 Sn = Geomeetriline jada: an = a1qn-1 Sn = Hääbuv jada: S = Trigonomeetria: sin 2 2 2 = sin +cos = 1 1+tan = sin2 = 2cossin cos2 = 2cos2-1 tan2 = siinusteoreem: (ümberringjoone raadius) koosinusteoreem: a2=b2+c2-bccos erikülgne kolmnurk: S= n Põhivõrrandid: sinx= a x=(-1) +180n, n Z cox= a x=+360n, n Z tanx= a x= +180n, n Z Kaare pikkus: l= Sektori pindala: S= n Liitintress: c= a(1) a-algväärtus Vektorid: pikkus paralleelsus || ristseis X1X2+Y1Y2= 0 nurk vektorite vahel cos = Sirge võrrand: kahe punktiga tõusu ja algkoordinaadiga y= kx+b (lp y-teljega) tõusu ja punktiga y-y1=k(x-x1) Kahe sirge vastastikused asendid: paralleelsed A||B k1=k2 risti AB k1k2 = -1 s1+s2 =
Püstprisma sin 0 1 2 3 1 2 tan tan 2 = Ruumala: V = S p h 2 2 1 - tan 2 2 Külgpindala: S k = PH sin cos 1 3 2 1 0 tan = Täispindala: S t = S k + 2 S p 2 1 + cos 2 2 2 1 - cos Korrapärane püramiid sin = ± 1 t
Põhikooli matemaatika abi Tasapinnalised kujundid Ruut Diagonaal: Pindala: S = a2 Ümbermõõt: P = 4·a Ruudu kõik küljed on võrdsed ja nurgad täisnurgad. Ristkülik Diagonaal: Pindala: S = a · b Ümbermõõt: P = 2(a + b) Ristkülikuks nimetatakse rööpkülikut, mille kõik nurgad on täisnurgad. Romb + = 180º Pindala: S = a · h Ümbermõõt: P = 4·a Rööpkülik + = 180º Pindala: S = a · h Ümbermõõt: P = 2(a + b) Rööpkülikuks nimetatakse nelinurka, mille vastasküljed on paralleelsed. Kolmnurk + + = 180º Pindala: Ümbermõõt: P = a + b + c Võrdkülgne kolmnurk Kõrgus: Pindala: Ümbermõõt: P = 3 · a Täisnurkne kolmnurk
Valemid ruut Tehted harilike murdudega P= 4a S= a² d = a ∙ √2 a m a ∘n : = b n b ∘m ristkülik P= 2(a+b) S= a · b Täisarvulise astendajaga aste an = a · a · ... · a
Valemid, teoreemid, seosed, tunnused, tingimused MATEMAATIKA EKSAMIL XI KLASSIS 1) a2-b2 = (a+b)(a-b) 2) a3 + b3=(a+b)(a2-ab+b2) 3) a3 - b3=(a-b)(a2+ab+b2) 4) (a+b)3 =a3+3a2b+3ab2+b3 5) (a-b)3 =a3-3a2b+3ab2-b3 −b ± √ b2−4 ac 2 6) a) lahenda ax + bx+c =0 2a b) tegurda : ax2 + bx+c= a( x− x1 )( x−x 2) c) tegurda ax3 + bx2+ax+b= x2(ax+b)+ax+b = (ax+b)(x2+1) 7) lim an bn lim an lim bn n n n 8) lim an bn lim an lim bn n n n 9) lim anbn lim an lim bn n n n an 10) lim lim an lim bn n bn n n 11) Korrutise tuletise sõnastus ja valem (u * v ) ´ = Korrutise tuletis võrdub esimese teguri tu
Kõik kommentaarid