...........................................................................36 Kahe sirge lõikepunkti koordinaadid......................................................................................37 Kahe sirge vaheline nurk........................................................................................................ 38 Ringjoonevõrrand................................................................................................................... 38 Ruutfunktsiooni graafik, selle joonestamine.......................................................................... 39 Pöördvõrdelise sõltuvuse graafik............................................................................................39 4 I Reaalarvud ja avaldised Arvuhulgad Naturaalarvude hulk N N = {0; 1; 2; 3; 4; ...}
Kui a = 0 , siis saadakse arvvõrratus (see ei ole lineaarvõrratus). Tõese arvvõrratuse lahenditeks on kõik reaalarvud. Mittetõese arvvõrratuse puhul lahendid puuduvad. 2.11 Ruutvõrratus Ühe tundmatuga ruutvõrratuseks nimetatakse võrratust ax 2 + bx + c > 0 või ax 2 + bx + c < 0 ( ka 0 või 0 ). Näiteks ruutvõrratuse ax 2 + bx + c > 0 lahendamine tähendab vastava ruutfunktsiooni y = ax 2 + bx + c positiivsuspiirkonna leidmist. Olgu selle funktsiooni nullkohad ehk ruutvõrrandi ax 2 + bx + c = 0 lahendid x1 ja x 2 . Esineda võivad järgmised kolm juhtu. I. D>0 (D=b 2 - 4ac ) . Ruutvõrrandil on kaks erinevat lahendit x1 ja x 2 . Sõltuvalt ruutliikme kordaja a märgist on võrratusel ax 2 + bx + c > 0 järgmised lahendid: 12 a >0 a <0
Tõese arvvõrratuse lahenditeks on kõik reaalarvud. Mittetõese arvvõrratuse puhul lahendid puuduvad. 2.11 Ruutvõrratus Ühe tundmatuga ruutvõrratuseks nimetatakse võrratust ax 2 bx c 0 või ax 2 bx c 0 ( ka 0 või 0 ). Näiteks ruutvõrratuse ax 2 bx c 0 lahendamine tähendab vastava ruutfunktsiooni y ax 2 bx c positiivsuspiirkonna leidmist. Olgu selle funktsiooni nullkohad ehk ruutvõrrandi ax 2 bx c 0 lahendid x1 ja x 2 . Esineda võivad järgmised kolm juhtu. I. D0 Db 2 4ac . Ruutvõrrandil on kaks erinevat lahendit x1 ja x 2 . Sõltuvalt ruutliikme kordaja a märgist on võrratusel ax 2 bx c 0 järgmised lahendid: 12 a0 a0
Tõusu ja 51. Kaldnurkse kolmnurga lahendamine algordinaadiga määratud sirge võrrand Vt. Punkt 31,32,33 Y - y1 = k ( X - x1 ) 52. Funktsioonid 53. Võrdeline sõltuvus y = kx + b y = ax , kus x 0 ja a 0 43. Kahe punktiga määratud sirge võrrand Graafik on sirge: X - x1 Y - y1 -läbib kooridnaatide alguspunkti = x 2 - x1 y 2 - y1 -kui võrdetegur a>0, siis sirge asub I,III 44. Sirge võrrandi koostamine telglüikude abil veerandis x y -kui võrdetegur a<0, siis sirge asub II, IV + =1 veerandis
DETERMINANDI MÕISTE. KAHEREALISE DETERMINANDI Avaldanud esimesest võrrandist x-i ja asendanud saadud tulemuse teise võr- KASUTAMINE VÕRRANDISÜSTEEMIDE LAHENDAMISEL randisse, saame c1 b1 y Paljude sisult erinevate probleemide lahendamine viib ühe ja sama seaduse a1 x b1 y c1 x , kui a1 0. järgi koostatud avaldisteni. Sel juhul on otstarbekas uurida nende avaldiste a1 üldisi omadusi. c b y° a2 ¡¡ 1 1 ±± b2 y c2 a1 korrutame võrrandi pooli a1-ga Üheks selliseks av
Juhusliku sündmuse A tõenäosuse arvutamisel tuleb silmas pidada, et 0 P( A) 1 . 5 6 3. ÜLESANNE (10 punkti) Ülesannete tekstid I Antud on funktsioon y x 3 5 x 2 3 x 7 . 1) Leidke funktsiooni kasvamis- ja kahanemisvahemikud. 2) Arvutage funktsiooni vähim väärtus lõigul 2; 4 . II Antud on funktsioon y x 3 5x 2 3x 7 . 1) Leidke funktsiooni kasvamis- ja kahanemisvahemikud. 2) Arvutage funktsiooni suurim väärtus lõigul 2; 4 . III Antud on funktsioon y x 3 3 x 2 2 . 1) Leidke funktsiooni kasvamis- ja kahanemisvahemikud. 2) Arvutage funktsiooni suurim väärtus lõigul 1; 4 . Vastused 1 1
YMM3731 Matemaatiline analu¨u¨s I 2007/08 ~o.-a. su¨gissemestril 3,5 AP 4 2-0-2 E S Dots. Lembit Pallas TTU¨ Matemaatikainstituut V-404, tel. 6203056 e-post: [email protected] K¨asitletavad teemad on toodud punktide kaupa. Neid punkte tuleb vaadelda ka kui kollokviumide ja eksami teooriak¨ usimusi. 1. Funktsiooni m~oiste ja esitusviisid 2. Funktsioonide liigitamine (paaris- ja paaritud funktsioonid, perioodilised funktsioo- nid, kasvavad ja kahanevad funktsioonid) 3. P¨o¨ordfunktsioon 4. Liitfunktsioon 5. Jada piirv¨aa¨rtus 6. Funktsiooni piirv¨aa¨rtus ¨ 7. Uhepoolsed piirv¨aa¨rtused 8. L~opmatult kasvavad ja l~opmatult kahanevad suurused 9. Piirv¨a¨artusteoreemid 10. L~opmatult kahanevate suuruste v~ordlemine 11. Funktsiooni pidevuse m~oiste
moodi? Tehke hinnete jaotusele vastav tulpdiagramm. 2 7. (11 p). Joonestage ühte teljestikku funktsioonide y = x2 3x 4 ja y = - x + 3 3 graafikud. Leidke ruutfunktsiooni nullkohad ja graafiku haripunkti koordi- naadid. Missugustes punktides lõikab lineaarfunktsiooni graafik koordinaattelgi? 8. (11 p) Silindrikujulise anuma läbimõõt on 56 cm ja kõrgus 120 cm. Kas sellesse anumasse saab valada 5 ämbritäit vett, kui ämbri maht on 9 liitrit? Kui kõrgele sel juhul vesi anumas tõuseb ja kui mitu protsenti anumast on veel täitmata? © Allar Veelmaa 2008 PÕHIKOOLI MATEMAATIKA PROOVIEKSAMI ÜLESANDED 2008.a. 1. (7 p.) Lihtsustage avaldis (3a + b)(3a b) (2b + 3a)2 12ab ja arvutage selle täpne
Kõik kommentaarid