Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge
Add link

Gümnaasiumi I astme valemid (24)

4 HEA
Punktid
Gümnaasiumi I astme valemid #1 Gümnaasiumi I astme valemid #2 Gümnaasiumi I astme valemid #3 Gümnaasiumi I astme valemid #4
Punktid 10 punkti Autor soovib selle materjali allalaadimise eest saada 10 punkti.
Leheküljed ~ 4 lehte Lehekülgede arv dokumendis
Aeg2007-12-11 Kuupäev, millal dokument üles laeti
Allalaadimisi 657 laadimist Kokku alla laetud
Kommentaarid 24 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor Rain Ungert Õppematerjali autor

Sarnased õppematerjalid

thumbnail
3
doc

Gümnaasiumi valemid

Matemaatika 11. klassi valemid Astendamise abivalemid am n a an a a =a m n m +n (a m ) n = a mn ( ab) n = a n b n n = a m -n = n a b b n p Liitprotsendiline kasvamine (kahanemine): L = A 1 + , kus L on 100 lõppväärtus, A - algväärtus, p - kasvamise protsent, n - kasvutsüklite arv. Logaritmide omadused: log a c = b a b = c a loga c = x lo

Matemaatika
thumbnail
816
pdf

Matemaatika - Õhtuõpik

Viies, parandatud trükk Toimetaja: Hele Kiisel Illustratsioonid ja graafikud: Elis Saar Korrektor: Maris Makko Kujundaja: Janek Saareoja ISBN 978-9949-489-95-4 (trükis) ISBN 978-9949-489-96-1 (epub) Trükitud trükikojas Print Best 4 Sisukord osa 0 – SISSEJUHATUS . .................... 17 OSA 2 – arvud ..................................... 75 matemaatika meie ümber ................... 20 arvuhulgad .......................................... 78 Matemaatika kui keel ....................................21 Naturaalarvud ...............................................78 Matemaatika muutub ja areneb .....................22 Täisarvud .......................................................82 Mis on matemaatika? ....................................23 Ratsionaalarvud .............................................83

Matemaatika
thumbnail
4
doc

Valemid

ARVUHULGAD 1. Naturaalarvude hulk N = {1;2;3; ...}. 2. Positiivsete täisarvude hulk Z + = N. 3. Negatiivsete täisarvude hulk Z - = { -1; -2; -3; . . . }. 4. Täisarvude hulk Z = Z Z { 0}. + - a 5. Ratsionaalarvude hulk Q = aZ bZ b 0 b 6. Irratsionaalarvude hulga I moodustavad lõpmatud mitteperioodilised kümnendmurrud. 7. Reaalarvude hulk R = Q I. KORRUTAMISE ABIVALEMID 8. (a + b)(a + b) = a 2 - b 2 . 9. ( a ± b) 2 = a 2 ± 2ab + b 2 . 10. ( a ± b) 3 = a 3 ± 3a 2 b + 3ab 2 ± b 3 . 11. a 3 ± b 3 = ( a ± b)(a 2 ab + b 2 ) . ASTMED JA JUURED 12. Korrutise aste ( a b) = a b . n n n n a an 13. Jagatise aste = b bn 14. Võrdsete alustega astmete

Matemaatika
thumbnail
54
doc

Valemid ja mõisted

MATEMAATIKA TÄIENDÕPE VALEMID JA MÕISTED KOOSTANUD LEA PALLAS 1 2 SAATEKS Käesolev trükis sisaldab koolimatemaatika valemeid, lauseid, reegleid ja muid seoseid, mille tundmine on vajalik kõrgema matemaatika ülesannete lahendamisel. Kogumikus on ka mõned kõrgema matemaatika õppimisel vajalikud mõisted, mida koolimatemaatika kursuses ei käsitletud.. 3 KREEKA TÄHESTIK - alfa - nüü - beeta - ksii - gamma - omikron - delta - pii - epsilon - roo - dzeeta - sigma - eeta - tau - teeta - üpsilon - ioota - fii - kapa - hii - lambda - psii - müü - oomega

Matemaatika
thumbnail
40
doc

Keskkooli matemaatika raudvara

KESKKOOLI MATEMAATIKA RAUDVARA 1. osa Andres Haavasalu dikteeritud konspekti järgi koostanud Viljar Veidenberg. 2003. aasta 1 Sisukord Sisukord........................................................................................................................................2 Arvuhulgad............................................................................................................................... 5 Naturaalarvude hulk N..........................................................................................................5 Negatiivsete täisarvude hulk z ­...........................................................................................5 Täisarvude hulk Z...............................................................................

Matemaatika
thumbnail
246
pdf

Funktsiooni graafik I õpik

1 10. klass Viljandi Täiskasvanute Gümnaasium KORDAMINE: FUNKTSIOONI GRAAFIK I Joonistel on kuue funktsiooni graafikud. Tee kindlaks, missuguste funktsioonidega on tegemist. 1 2 3 © Allar Veelmaa 2014 2 10. klass Viljandi Täiskasvanute Gümnaasium KORDAMINE: FUNKTSIOONI GRAAFIK II © Allar Veelmaa 2014 3 10. klass Viljandi Täiskasvanute Gümnaasium REAALARVUDE PIIRKONNAD Kuna erinevates õpikutes kasutatakse reaalarvude piirkondade märkimiseks erinevaid tähistusi, siis oleks kasulik teada mõlemat varianti. Nimetus Tingimus Esimene

Matemaatika
thumbnail
12
pdf

Matemaatika eksami teooria 10. klass

Matemaatika eksami teooria Reaalarvud 1.1. Naturaal-, täis- ja ratsionaalarvud · Naturaalarvude hulk N (ainult positiivsed täisarvud) · Naturaalarvu n vastandarv -n defineeritakse selliselt, et n+(-n)=0 · Naturaalarvud koos oma vastandarvudega moodustavad täisarvude hulga Z (jaguneb pos ja neg) · Iga kahe täisarvu vahe on alati täisarv · Kui arv a ei jagu arv b-ga, siis on tegemist murdarvuga. Kõik täisarvud ja positiivsed ning negatiivsed murdarvud moodustavad kokku ratsionaalarvude hulga Q. Ratsionaalarv on arv, mis avaldub jagatisena a/b, kus a Z, b Z ja b 0. · Iga ratsionaalarv avaldub lõpmatu perioodilise kümnendmurruna. 1.2 Irratsionaal- ja reaalarvud · Arv, mis avaldub lõpmatu mitteperioodilise kümnendmurruna, on irratsionaalarv. · Arvutamisel piirdutakse ligikaudsete väärtustega e lähenditega, nt pii=3,14 · Kuna iga ratsionaalarv avaldub lõpmatu perioo

Matemaatika
thumbnail
12
pdf

2009. aasta matemaatika riigieksami ülesanded ja lahendused

MATEMAATIKA RIIGIEKSAM 2010 Eksami eesmärk Matemaatika riigieksami peamisteks eesmärkideks on: · teada saada, kui struktureeritud ja korrastatud on gümnaasiumilõpetaja matemaatikaalased teadmised; · selgitada välja, kui hästi suudab õpilane õpitut rakendada (näiteks lahendada mitterutiinseid ülesandeid); · teada saada, milline on gümnaasiumilõpetajate matemaatikaalane ettevalmistus õpingute jätkamiseks järgmisel haridusastmel. Eksami vorm Matemaatika riigieksami põhieksam on kahes variandis ja lisaeksam on ühes variandis. Matemaatika riigieksam (ja ka lisaeksam) on kaheosaline kirjalik eksam ­ 1. osa kestus on 120 minutit ja 2. osa kestus on 150 minutit. Kahe eksamiosa vahel on 45 minutiline vaheaeg. Käesoleva õppeaasta matemaatika riigieksam toimub 4. mail 2010.a, algusega kell 10.00. Eksaminandidele, kes mõjuvatel põhjustel põhieksamil osaleda ei saa, korraldatakse lisaeksam 17. mail 2010.a, alg

Matemaatika



Lisainfo

Kooli õppekavas olevad valemid 10.ndale klassile.

Märksõnad


Kommentaarid (24)

kerx profiilipilt
Kerli Loopman: Hea. Kuna ma ise vihikusse koolis eriti ei kirjuta ja õpikut mul ka ei ole siis super !
03:12 16-02-2009
b0neb0y profiilipilt
Oliver Nuut: väga hea materjal. Absoluutselt kõik valemid, mida vaja sees, isegi üle :) Aitäh
20:39 05-10-2008
kiki2006 profiilipilt
kiki2006: siin saab ültse head materjali aga peab otsima hoolikalt , aitab väga !!!!
22:54 29-01-2009





Uutele kasutajatele e-mailiga aktiveerimisel
10 punkti TASUTA

Konto olemas? Logi sisse

Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun