1. Reaalarvud ja avaldised a, kui a 0 · Arvu absoluutväärtus a = - a, kui a < 0 · Astme mõiste ja omadused a 0 = 1, kui a 0 a1 = a a n = a a a a, kui n N 2 1 a-k = , kui a 0 ja k Z või ak kui a > 0 ja k Q m n a m , kui a > 0, m Z ja n N a = n 2 0, kui a = 0, m N 1 ja n N1
Romb Rööpkülik Trapets Täisnurkne kolmnurk Sirge tasandil Siinusteoreem Vektor Silinder Püstprisma Kolmnurka pindala Koonus Korrapärane püramiid Aritmeetiline jada Geomeetriline jada Kera Hääbuv geomeetriline jada Liitprotsent
Aritmeetiline jada: an = a1+(n-1)d d = an-an-1 Sn = Geomeetriline jada: an = a1qn-1 Sn = Hääbuv jada: S = Trigonomeetria: sin 2 2 2 = sin +cos = 1 1+tan = sin2 = 2cossin cos2 = 2cos2-1 tan2 = siinusteoreem: (ümberringjoone raadius) koosinusteoreem: a2=b2+c2-bccos erikülgne kolmnurk: S= n Põhivõrrandid: sinx= a x=(-1) +180n, n Z cox= a x=+360n, n Z tanx= a x= +180n, n Z Kaare pikkus: l= Sektori pindala: S= n Liitintress: c= a(1) a-algväärtus Vektorid: pikkus paralleelsus || ristseis X1X2+Y1Y2= 0 nurk vektorite vahel cos = Sirge võrrand: kahe punktiga tõusu ja algkoordinaadiga y= kx+b (lp y-teljega) tõusu ja punktiga y-y1=k(x-x1) Kahe sirge vastastikused asendid: paralleelsed A||B k1=k2 risti AB k1k2 = -1 s1+s2 =
Põhja pindala: Sp = a · ha Külgpindala: Sk = P · h Ruumala: V = Sp · h Põhja ümbermõõt: P = 2(a + b) Täispindala: St = Sk + 2Sp Korrapärane püstprisma Põhjapindala - kus n on tahkude arv Külgpindala - Sk = a · h · n Silinder Põhja pindala: Sp = Külgpindala: Sk = 2 · · r · h Ruumala: V = Sp · h = · ·r 2 Täispindala: St = Sk + 2Sp = 2 · · r · h + 2 · r2 · h ABCD - telglõige · r2 Korrapärane püramiid
Püstprisma sin 0 1 2 3 1 2 tan tan 2 = Ruumala: V = S p h 2 2 1 - tan 2 2 Külgpindala: S k = PH sin cos 1 3 2 1 0 tan = Täispindala: S t = S k + 2 S p 2 1 + cos 2 2 2 1 - cos Korrapärane püramiid sin = ± 1 t
Õppematerjalide loomist toetab AS Topauto/autod, markide Seat, Suzuki, Hyundai ning kasutatud autode müüja üle Eesti 3. Vektor tasandil. Joone võrrand Põhiteadmised · Punkti koordinaadid; · vektor, vektori koordinaadid; · vektorite summa ja vahe; · vektori korrutamine arvuga; · kahe vektori skalaarkorrutis; · vektori pikkus ja nurk vektorite vahel; · vektorite ristseisu ja kollineaarsuse tunnused; · joone võrrandi mõiste; · sirge võrrand tasandil; · kahe sirge vastastikused asendid; · ringjoone võrrand; · parabooli võrrand. Põhioskused · Tehete sooritamine vektoritega geomeetriliselt ja koordinaatkujul; · vektorite kasutamine geomeetriaülesannete lahendamisel; · sirge võrrandi koostamine, kui sirge on määratud punkti ja tõusuga, tõusu ja algordinaadiga, kahe punktiga, punkti ja sihivektoriga; · sirge tõusu määramine; · kahe sirge vahelise nurga arvutamine;
Matemaatika õhtuõpik 1 2 Matemaatika õhtuõpik 3 Alates 31. märtsist 2014 on raamatu elektrooniline versioon tasuta kättesaadav aadressilt 6htu6pik.ut.ee CC litsentsi alusel (Autorile viitamine + Mitteäriline eesmärk + Jagamine samadel tingimustel 3.0 Eesti litsents (http://creativecommons.org/licenses/by-nc-sa/3.0/ee/). Autoriõigus: Juhan Aru, Kristjan Korjus, Elis Saar ja OÜ Hea Lugu, 2014 Viies, parandatud trükk Toimetaja: Hele Kiisel Illustratsioonid ja graafikud: Elis Saar Korrektor: Maris Makko Kujundaja: Janek Saareoja ISBN 978-9949-489-95-4 (trükis) ISBN 978-9949-489-96-1 (epub) Trükitud trükikojas Print Best 4 Sisukord osa 0 – SISSEJUHATUS . .................... 17 OSA 2 – arvud ..................................... 75 matemaatika meie ümber ................... 20 arvuhulgad ....................
Ring S=r2 ; P=2r Rööpkülik S=ah ; P=2(a+b) Ruut S=a ; P=4a 2 Romb S=d1*d2/2 = a*h Ristkülik S=a*b ; P=2(a+b) Trapets S=a+b/2*h = k*h ; P=a+b+c+d Kolmnurk S=a*h:2 ; P=a+b+c Täisnurkne kolmnurk S=1/2*ah ; Risttahukas S=2(ab+ac+bc) ; V=abc Viete teoreem: X1+X2 = -p Püstprisma Sk=P*h ; St=Sk+2Sp; V=Sp*h X1*X2 = q Kuup Sp=a ; Sk=4*a 2 2 Silinder Sp=r2 ; St=2r ; Sk=2rh ; V=r2h Kera S=4r2 ; V= 4/3 r3 Koonus Sp=r2 ; Sk=rm ; St=r ; V= 1/3 r2h Korrapärane püramiid Sk=P*h ; St=Sk+2Sp ; V=Sp*h Püramiid Sk=Pm/2 ; St =Sk+Sp ; V=1/3Sp*h · (a+b)(a-b)= a²- b² · (a-b)³=a³-3a²b+3ab²-b³ · (a+b)²= a²+2ab+b² · (a+b)(a²-ab+b²)= a³+b³ · (a-b)²= a²-2ab+b² · (a-b)(a²+ab+b²)= a³-b³ · (a+b)³= a³+3a²b+3ab²+b³ Sin = a/c a = c*sin c = a/sin Sin = b/c Cos = b/c b = c*cos ax2 + bx + c = 0 -b
Kõik kommentaarid