Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

Optimeerimine majanduses 1kt vastused - sarnased materjalid

diferentsvõrrand, marginaalkulu, nõudlusfunktsioon, tuletis, vihje, vihjed, pakkumisfunktsioon, ellips, hesse, asendusmeetod, osatuletis, optimeerimine, kulufunktsioon, graafik, näidake, elastsus, koostage, tasakaaluhind, hinnast, cournot, kusjuures, tööjõud, tasakaaluvõrrand, tähiseid, vist, optimaalset, maksimeerimine, osatuletiste
thumbnail
1
rtf

optimeerimine majanduses 1kt vastused variant B

Optimeerimine majanduses 2011 sügis, kt nr 1 vastused/vihjed Ülesanded Optmajkt1B_11. 1(2p). Kui hinnaga P kauba iga ühiku q pealt makstakse aktsiisi t, siis kauba pakkumisfunktsioon on qS = (P ­ t )/ 2 ­ c (c>0 ). Olgu nõudlusfunktsioon qD = a - P/ 2 (a>0 ). a) Leida tasakaaluhind P* ja tasakaalukogus q*, mis sõltuvad aktsiisist t. b) Leida kogu maksutulu T = t q* maksimaalne väärtus t suhtes. 2(3p). Hinnaga P kauba nõudlusfunktsioon olgu Q = P ­1/a (a>0 ). a) Millise a korral on nõudlus väheelastne, ühikelastne või elastne hinna suhtes. b) Näidake, et antud nõudlusfunktsiooni korral tulukuse R = P Q marginaal MR ( Q suhtes) rahuldab seost MR = P (1 + 1/ (Q; P ) ) 3(3p). Olgu nõudlusfunktsioon D n = 5 ­ p n2 ja pakkumisfunktsioon S n + 1 = 1 + 4 p n2 . a) Koostage hinna diferentsvõrrand. b) Leidke tasakaaluhind. c) Tehke "ämblikuvõrgu" analüüsi. Vihje: x 2 / a 2 + y 2/ b 2 = 1 on ellips. 4(6p)

optimeerimine majanduses
40 allalaadimist
thumbnail
16
doc

Majandusmatemaatika teooriaküsimused eksamiks

Keskmine kulu AC (Q) ­ kogukulu jagatud toodetud kogusega. 7. Mis on tulu ja keskmine tulu, kasum ja keskmine kasum? Kogutulu R (Q) ­ tulu, mis saadakse toodangu müügist R (Q) = pQ. Keskmine tulu AR (Q) ­ tulu jagatud toodete kogusega. Kasum (Q) ­ summa, mille võrra tulud ületavad kulusid (Q)= R(Q) ­ C(Q) (tulu-kogukulu) Keskmine kasum A(Q) ­ kasum jagatud toodete kogusega. 8. Mis on tasuvuspunkt. Tasuvuspunkt on müügimaht, mille puhul tulu ja kulu on võrdsed 9. Mis on nõudlusfunktsioon ja nõudlus, pakkumisfunktsioon ja pakkumine? Nõudlusfunktsioon ­ nõutav kogus Q on toote ühikuhinna p funktsioon Q=f(p) Nõudlus on kaupade ja teenuste hulk, mida tarbija on valmis ja võimeline kindla hinnaga ostma. Pakkumisfunktsioon ­ pakutav kogus Q on toote ühikuhinna p funktsioon Q=f(p) või QS=f(p) Pakkumine on kaupade ja teenuste hulk, mida tootjad on valmis ja võimelised kindla hinnaga müüma. Teooriaküsimused nr. 2 1

Majandusmatemaatika
239 allalaadimist
thumbnail
10
docx

Majandusmatemaatika teooriaküsimused

Keskmine kulu AC(Q) - kogukulu jagatud toodetud kogusega, 7. Mis on tulu, keskmine tulu, kasum ja keskmine kasum? Kogutulu R(Q) - tulu, mis saadakse toodangu müügist R(Q)=pQ Keskmine tulu AR(Q)- tulu jagatud toodetud kogusega, Kasum (Q) - summa, mille võrra tulud ületavad kulusid, (Q)=R(Q) - C(Q) [tulu-kogukulu] Keskmine kasum A(Q)- kasum jagatud toodetud kogusega, 8. Mis on tasuvuspunkt? Tasuvuspunkt on müügimaht, mille puhul tulu ja kulu on võrdsed. 9. Mis on nõudlusfunktsioon ja nõudlus, pakkumisfunktsioon ja pakkumine? Nõudlusfunktsioon - nõutav kogus Q on toote ühikuhinna p funktsioon Q=f(p) Nõudlus on kaupade ja teenuste hulk, mida tarbija on valmis ja võimeline kindla hinnaga ostma. Pakkumisfunktsioon - pakutav kogus Q on toote ühikuhinna p funktsioon Q=f(p) või QS=f(p) Pakkumine on kaupade ja teenuste hulk, mida tootjad on valmis ja võimelised kindla hinnaga müüma.

Majandusmatemaatika
233 allalaadimist
thumbnail
7
docx

Majandusmatemaatika teooria

Kogutulu R(Q) - tulu, mis saadakse toodangu müügist R(Q)=pQ. Keskmine tulu AR(Q)- tulu jagatud toodetud kogusega AR(Q)=R(Q)/Q. Kasum (Q) - summa, mille võrra tulud ületavad kulusid, (Q)=R(Q) - C(Q) [tulu-kogukulu] Keskmine kasum A(Q)- kasum jagatud toodetud kogusega, 8. Mis on tasuvuspunkt? Tasuvuspunkt on müügimaht, mille puhul tulu ja kulu on võrdsed. Osutub, et kui kaupa müüakse antud hinnaga p, siis tasuvuspunktis Q(T) on keskmine kogukulu hinnaga võrdne, AC(Qt)=p 9.Mis on nõudlusfunktsioon ja nõudlus, pakkumisfunktsioon ja pakkumine? Nõudlus on ostja valmisolek ja võime maksta kindel hind mingi kindla koguse kauba või teenuse eest/ seos hüvise hinna ja selle koguse vahel, mida tarbijad vaadeldaval perioodil soovivad ja suudavad osta. Pakkumine on seos hüvise hinna ja selle koguse vahel, mida tootjad soovivad ja suudavad vaadeldaval perioodil müüa. Nõutav kogus Q on tooteühiku hinna p funktsioon, mida väljendatakse Q=f(p) või Q(D)=f(p)

Majandusmatemaatika
76 allalaadimist
thumbnail
78
pdf

Majandusmatemaatika

x x y 3 4x % 1 Kulu-, tulu- ja kasumifunktsioon. Matemaatiliste meetodite kasutamisel majandusprotsesside analüüsimisel puututakse kokku mitmesuguste funktsioonidega. Mikroökonoomikast on tuntuimad kulu-, tulu- ja kasumifunktsioon ning nõudlus- ja pakkumisfunktsioon. Kulufunktsioon on funktsionaalne seos tootmismahu (tegevuse mahu) q (quantity) ja kulude C (cost) vahel. Kulufunktsioon koosneb kahest komponendist ­ fikseeritud kuludest ja muutuvkuludest. Kulufunktsioon = fikseeritud kulud + muutuvkulud C (q) ' CF % cv q kus q on tootmismaht; CF on fikseeritud kulud; cv on muutuvkulu tooteühiku kohta.

Raamatupidamise alused
399 allalaadimist
thumbnail
4
pdf

Majandusmatemaatika - Ühe muutuja funktsioonid 2

Milline tootmisplaan tagab suurima kasumi? Lahendus: Tulufunktsioon avaldub kujul R = 950Q. Analoogselt ülesandega 7 peame koos- tama kasumifunktsiooni. Toota on mõtet ainult juhul, kui tulud ületavad muutuvaid kulusid T V C(Q) = 0, 5Q2 - 10Q ehk 950Q > 0, 5Q2 - 10Q. Maksimumi leidmiseks peame leidma kasumifunktsiooni nullkoha. Vastus: Piirkond Q < 1920 ja maksimaalne kasum (960) = 400800 9. On teada TK-firma kulufunktsioon C(Q). Leida pakkumisfunktsioon hinna p funkt- sioonina S (p). Kui suur on firma kasum hinna väärtusel p = p0 ? a)C(Q) = 3Q2 + 18Q + 7 (p0 = 24, p0 = 30 ) Täieliku konkurentsi tingimustes avaldus nõudlusfunktsioon C (Q) = p. Meie ülesande puhul siis 6Q + 18 = p Q = p-18 6 . Kui p0 = 24, siis nõudlus on p-18 6 = 1 ühik, kogukulu on C(24) = 3Q2 + 18Q + 7 = 28, tulu R(Q) = 24 · 1 = 24

Majandusmatemaatika
91 allalaadimist
thumbnail
57
pdf

Füüsika 5-nda kt variandid

c ' ,t-r,(r l t,{ -' i == 9,tt KONTROL LTO{) nr. b N;,";, ...T."..S-cg.ff x,,,"ur, .....F.t].-n... VONKUMISFi ja LAINED 05. detsernber2005 / . .. l.1. Harmoonj ,eit ionk va punkti v6nke[lnplitrrud orr 8 cm, nurksagedu,s 4 s-1, alffaas

Füüsika
209 allalaadimist
thumbnail
57
pdf

Füüsika kontrolltöö nr. 5 - VONKUMISED ja LAINED

c ' ,t-r,(r l t,{ -' i == 9,tt KONTROL LTO{) nr. b N;,";, ...T."..S-cg.ff x,,,"ur, .....F.t].-n... VONKUMISFi ja LAINED 05. detsernber2005 / . .. l.1. Harmoonj ,eit ionk va punkti v6nke[lnplitrrud orr 8 cm, nurksagedu,s 4 s-1, alffaas

Füüsika
74 allalaadimist
thumbnail
35
pdf

Mitmemuutuja funktsioonid

muutujale muudu xi ja jättes ülejäänud muutujad konstantseks. u = f ( x1 ,..., xi -1 , xi + xi , xi +1 ,..., x n ) - f ( x1 ,..., xi -1 , xi , xi +1 ,..., x n ) Def. 3.1. Funktsiooni z = f ( x, y ) osatuletist x järgi nimetatakse funktsiooni tuletist tingimusel, et y = const . z z f ( x + x , y ) - f ( x, y ) (3.1) = z x = lim x = lim x x 0 x x 0 x Selle funktsiooni osatuletiseks y järgi on tuletis z yz f ( x, y + y ) - f ( x, y ) (3.2) = z y = lim = lim y y 0 y y 0 y n-muutuja funktsiooni u = f ( x1 , x 2 ,..., x n ) osatuletiseks x k suhtes on tuletis tingimusel, et kõik muutujad on konstantsed, välja arvatud x k . z z = lim k (3.3) x k x k 0 x k k = 1,2,..., n z

Matemaatiline analüüs 2
240 allalaadimist
thumbnail
142
pdf

Matemaatilise analüüsi konspekt TTÜ's

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.8 L~opmatult kahanevate ja l~opmatult kasvavate suuruste v~ordlemine. 43 2.9 Funktsiooni pidevus. Katkevuspunktide liigitus. . . . . . . . . . . 45 ¨ 2.10 Uhepoolne pidevus. Pidevus hulkadel. Elementaarfunktsioonide pidevus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.11 L~oigul pidevate funktsioonide omadusi. . . . . . . . . . . . . . . . 52 3 Tuletis ja diferentsiaal 57 3.1 Tuletise, diferentseeruva funktsiooni ja diferentsiaali m~oisted. . . 57 3.2 N¨aiteid tuletiste kohta rakendustes. . . . . . . . . . . . . . . . . . 60 3.3 Tuletiste arvutamise p~ohireeglid . . . . . . . . . . . . . . . . . . . 61 3.4 Ilmutamata funktsiooni, p¨o¨ordfunktsiooni ja parameetrilise funk- tsiooni diferentseerimine. . . . . . . . . . . . . . . . . . . . . . . . 62

Matemaatiline analüüs
47 allalaadimist
thumbnail
142
pdf

Matemaatiline analüüs I

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.8 L~opmatult kahanevate ja l~opmatult kasvavate suuruste v~ordlemine. 43 2.9 Funktsiooni pidevus. Katkevuspunktide liigitus. . . . . . . . . . . 45 ¨ 2.10 Uhepoolne pidevus. Pidevus hulkadel. Elementaarfunktsioonide pidevus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.11 L~oigul pidevate funktsioonide omadusi. . . . . . . . . . . . . . . . 52 3 Tuletis ja diferentsiaal 57 3.1 Tuletise, diferentseeruva funktsiooni ja diferentsiaali m~oisted. . . 57 3.2 N¨aiteid tuletiste kohta rakendustes. . . . . . . . . . . . . . . . . . 60 3.3 Tuletiste arvutamise p~ohireeglid . . . . . . . . . . . . . . . . . . . 61 3.4 Ilmutamata funktsiooni, p¨o¨ordfunktsiooni ja parameetrilise funk- tsiooni diferentseerimine. . . . . . . . . . . . . . . . . . . . . . . . 62

Matemaatika
42 allalaadimist
thumbnail
37
doc

Teoreetilibe informaatika kordamisküsimused

Teoreetiline informaatika Kordamisküsimuste vastused Eero Ringmäe 1. Hulkade spetsifitseerimine, tehted hulkadega, hulgateooria paradoksid. Hulk: Korteezh ­ järjestatud lõplik hulk. Hulk ­ mingi arv elemente, mille vahel on leitav seos ­ klassifitseeritud elementide kogum. Hulk ­ samalaadsete objektide järjestamata kogum. Hulga esitamine: elementide loeteluna A = {2;3;4} predikaadi abil A = {x | P(x)} Tühihulk on iga hulga osahulk. Iga hulk on iseenda osahulk. Hulga boleaan ­ kõigi osahulkade hulk. H boleaan on 2H. 2H = {x | x on osahulgaks H-le}. Boleaani võimsus |2H| = 2|H| Tühja hulga boleaani võimsus on 1. Tehted: Hulkade võrdsus = A on B osahulk AND B on A osahulk. Ekvivalentsiseose definitsioon ((A => B) && (B => A)) ­ hulgas sisaldavad samu elemente. Hulga osahulk ­ võib võrduda hulgaga. Hulga pärisosahulk ­ ei või võrduda. Hulkade ühend ­ C = {x | x kuulub A &&

Teoreetiline informaatika
96 allalaadimist
thumbnail
43
pdf

Keskkooli lõpueksam (2008)

3 3 funktsiooni suurim väärtus on 27 . III 1)Kasvamisvahemikud ( ; 0) ja (2; ) , kahanemisvahemik (0; 2) ; 2) lõigul 1; 4 funktsiooni suurim väärtus on 14. Näpunäited I, II, III 1) Funktsioon y f ( x) on diferentseeruv. Diferentseeruv funktsioon on kasvav vahemikus, kus f ( x) 0 ja kahanev vahemikus, kus f ( x) 0 . Seega tuleb leida funktsiooni tuletis ning seejärel lahendada võrratused f ( x) 0 ja f ( x) 0 . Kuna on tegemist kuupfunktsiooniga, siis võrratused f ( x) 0 ja f ( x) 0 kujutavad ruutvõrratusi. Ruutvõrratuse lahendamiseks toimime järgmiselt: 1) leiame vastava ruutfunktsiooni nullkohad, st võrrandi f ' ( x) 0 lahendid; 2) arvestades ruutliikme kordaja märki ja leitud nullkohti skitseerime ruutfunktsiooni graafiku (parabooli);

Algebra ja Analüütiline...
780 allalaadimist
thumbnail
85
pdf

Konspekt

.................................. 7 2.3.1 Kulufunktsioon ................................................................................................................ 7 2.3.2 Tulufunktsioon................................................................................................................. 9 2.3.3 Kasumifunktsioon ............................................................................................................ 9 2.3.4 Nõudlusfunktsioon .......................................................................................................... 9 2.3.5 Pakkumisfunktsioon ...................................................................................................... 10 2.4 Kasumifunktsioon lineaarse nõudlus- ja kulufunktsiooni korral ........................................... 12 2.5 Liitfunktsioon ..................................................................................................

Matemaatika ja statistika
559 allalaadimist
thumbnail
70
docx

Mis on elektrilaeng ja millised tema 5 põhiomadust.

YFR0012 Eksami küsimused Mis on elektrilaeng ja millised tema 5 põhiomadust. Elektrilaeng on mikroosakese fundamentaalne omadus. Elektrilaengu põhiomadused:  Elektrilaenguid on kahte tüüpi: positiivne ja negatiivne.  Eksisteerib vähim positiivne ja negatiivne laeng, mis on absoluutväärtuselt täpselt võrdsed. Elementaarlaeng.  Elektrilaeng ei eksisteeri ilma laengukandjata.  Kehtib elektrilaengu jäävuse seadus: Isoleeritud süsteemis on elektrilaengute algebraline summa jääv.  Elektrilaeng on relativistlikult invariantne. Ei sõltu taustsüsteemist. Coulomb’ seadus, joonis, valem, seletus. Samanimelised laengud tõukuvad. Erinimelised laengud tõmbuvad. Valem: k∗1 ∗q 1∗q 2 ε r 12 ∗⃗ r 212 ⃗ F12= r 12 Joonis: ε ≥ 1 on suhteline dielektriline läbitavus, vaakumis ε =1 Elektrivälja tugevus. Valem, ühik, suund. Jõujo

Füüsika
14 allalaadimist
thumbnail
21
doc

Mikroökonoomika eksamiks vajalik materjal

AVC) leitakse ühe tooteühiku kohta tuleva muutuvkuluna TVC TVC AVC = = TP Q KESKMINE PÜSIKULU AFC (average fixed cost AFC) leitakse ühe tooteühiku kohta tuleva püsikuluna TFC TFC AFC = = TP Q KESKMINE KOGUKULU ATC (AC) TC TVC + TFC TVC TFC ATC = = = + TP TP TP TP ATC = AC = AVC + AFC PIIRKULU e MARGINAALKULU MC (marginal cost MC) on tootmiskulu, mida tehakse ühe tooteühiku täiendavaks tootmiseks. TC TVC + TFC TVC MC = = = TP TP TP KOGUTULU TR (total revenue TR) on tulu, mida ettevõte saab oma toodangu müügist. TR= P×TPrealis= P×Qrealis

Mikroökonoomika
556 allalaadimist
thumbnail
273
pdf

Lembit Pallase materjalid

11. Funktsiooni pidevuse m~oiste. Tarvilik ja piisav tingimus funktsiooni pidevuseks 12. Elementaarfunktsioonide pidevus 13. L~oigul pidevate funktsioonide omadused 14. Funktsiooni katkevuspunktid 15. Funktsiooni tuletise m~oiste, selle geomeetriline ja mehhaaniline t~olgendus 1 16. Pidevus ja diferentseeruvus 17. M~onede p~ohiliste elementaarfunktsioonide tuletised 18. Diferentseerimisreeglid 19. P¨o¨ordfunktsiooni tuletis 20. Liitfunktsiooni tuletis 21. Logaritmiline diferentseerimine 22. Ilmutamata funktsiooni tuletis 23. Parameetrilisel kujul esitatud funktsiooni tuletis 24. Funktsiooni diferentsiaal 25. K~orgemat j¨arku tuletised 26. Joone puutuja ja normaali v~orrandid 27. Rolle'i teoreem 28. Cauchy teoreem 29. Lagrange'i teoreem 30. L'Hospitali reegel 31. L'Hospitali reegel teistel m¨aa¨ramatuse juhtudel 32. Taylori valem 33

Matemaatiline analüüs
808 allalaadimist
thumbnail
177
pdf

ÜHE MUUTUJA MATEMAATILINE ANALÜÜS

. . . . . . . . 84 3.7.3 Weierstrassi teoreemide tõestus Heine–Boreli lemma abil . . . . . . . . . . . 85 3.7.4 Cantori teoreemi tõestus Heine–Boreli lemma abil . . . . . . . . . . . . . . 85 4 Diferentseeruvad funktsioonid 87 4.1 Diferentseeruvuse mõiste ja diferentseerimisreeglid . . . . . . . . . . . . . . . 87 4.1.1 Tuletis, selle geomeetriline ja analüütiline tähendus . . . . . . . . . . 87 4.1.2 Tehetega seotud diferentseerimisreeglid . . . . . . . . . . . . . . . . . 90 4.1.3 Liitfunktsiooni ja pöördfunktsiooni diferentseerimine . . . . . . . . . 91 4.2 Diferentseeruvuse keskväärtusteoreemid, nende rakendused . . . . . . . . . . 93 4.2.1 Fermat’ ja Rolle’i teoreem . . . . . . . . . . . . . . . . . . . . . . . . 93 4.2

Algebra I
8 allalaadimist
thumbnail
13
doc

Matemaatiline analüüs 1 kordaisküsimuste vastused

*Järeldus x0->x0+ x=> y=f(x0+ x)-f(x0)=>f-ni muut x->0 y->0 *Märkus1 põhilised elementaarf-nid on oma määramispiirkonnas pidevad *Märkus2 u,v ->pidevad f-nid =>u ± v, u*v, u/v(v 0), u(v(x)) ­pidevad *Katkevuspunktid: Def. Kui mõni pidevuse f-ni tingimustest ei ole täidetud, siis f-n katkev 1) I liiki katkevuspunkt: f(x0)= (x0 MP) (joonis) 2) II liiki katkemispunkt limx->x0-f(x) =A1, limx->x0+f(x)=A2 =>A1 A2(joonis) 12. F-ni tuletis, füüs ja geom. Tõlgendus *ühtlane sirgjooneline liikumine t=t2-t1; s=s2-s1(joonis); vk = s/ t-> hetkkiirust: t->0 =>v=lim t->0 s/ t ­isel meh. Liikumise hetkkiirust: Newton(1642-1727) ja Leibniz(1646-1716) *DEF f-n punktis x diferentseerunud parajasti siis, kui tuletis selles punktis on olemas (ainsas punktis, v. piirkonnas D). Tuletise leidmise protsessi me nimetame diferentseerimiseks: Lim x->0 y/ x=y' *Märkus: vajadusel võib leida ka

Kõrgem matemaatika
147 allalaadimist
thumbnail
5
doc

Matemaatilise analüüsi 2.kollokviumi

Tähistame = x + y Siis 0 x 0 ja y 0.Tingimusest saame kahe muutuja pidevuseks f(x+ x) = f(x) + fxj(x+ x) xj punktis P0(x0 , y0) tarviliku ja piisava tingimuse lim z = 0.Vektorite ~u = (u1; u2; : : : ; um) ja ~v = (v1; v2; : : : ; vm) 0 skalaarkorrutiseks nimetatakse summat ~u * ~v = u1v1 + u2v2 + : : : + umvm : Defineerida funktsiooni tuletis etteantud suunas. Gradient. Telgedesuunalised tuletised. Suunatuletise tõlgendus. Leiame funktsiooni f(x) tuletise punktis a vektori s suunas. Vektori s suunaline ühikvektor on kujul n := s / s2 = (cos , ... , cos

Matemaatiline analüüs 2
37 allalaadimist
thumbnail
151
pdf

PM Loengud

V.Jaaniso Pinnasemehaanika 1. SISSEJUHATUS Kõik ehitised on ühel või teisel viisil seotud pinnasega. Need kas toetuvad pinnasele vundamendi kaudu, toetavad pinnast (tugiseinad), on rajatud pinnasesse (süvendid, tunnelid) või ehitatud pinnasest (tammid, paisud) (joonis 1.1). a) b) c) d) J o o n is 1 .1 P in n a s e g a s e o tu d e h i tis e d v õ i n e n d e o s a d .a ) p i n n a s e le t o e t u v a d ( m a d a l - j a v a iv u n d a m e n t) b ) p i n n a s t t o e t a v a d ( t u g is e in a d ) c ) p in n a s e s s e r a j a tu d ( tu n n e li d , s ü v e n d i d d ) p in n a s e s t r a j a tu d ( ta m m i d , p a is u d ) Ehitiste koormuste ja muude mõjurite tõttu pinnase pingeseisund muutub, pinnas deformeerub ja võib puruneda nagu kõik teisedki materjalid. See põhjustab

Pinnasemehaanika, geotehnika
200 allalaadimist
thumbnail
58
doc

Masinamehaanika täielik loengukonspekt

Loengukonspekt õppeaines MASINAMEHAANIKA Koostanud prof. T.Pappel Mehhatroonikainstituut Tallinn 2006 2 SISUKORD SISSEJUHATUS 1. ptk. MEHHANISMIDE STRUKTUURITEOORIA 1.1. Kinemaatilised paarid, lülid, ahelad 1.1.1. Kinemaatilised paarid 1.1.2. Vabadusastmed ja seondid 1.1.3. Lülid, kinemaatilised ahelad 1.2. Kinemaatilise ahela vabadusaste. Liigseondid. Liigliikuvused 1.2.1. Vabadusaste 1.2.2. Liigseondid. Liigliikuvused. 1.3. Mehhanismide struktuuri sünteesimine 1.3.1. Struktuurigrupid 1.3.2. Kõrgpaaride arvestamine 1.3.3. Kinemaatiline skeem. Struktuuriskeem 2. ptk. MEHHANISMIDE KINEMAATILINE ANALÜÜS 2.1. Eesmärk. Algmõisted 2.2. Mehhanismide kinemaatika analüütilised meetodid

Masinatehnika
509 allalaadimist
thumbnail
55
pdf

Matemaatiline analüüs II loengukonspekt

MATEMAATLINE ANALÜÜS II 1. KORDSED INTEGRAALID Kordame kõigepealt mõningaid teemasid Matemaatlise analüüsi I osast. 1.1 Kahe muutuja funktsioonid Kui Tasndi R 2 mingi piirkonna D igale punktile x, y D seatakse ühesel viisil vastavusse arv z, siis öeldakse, et piirkonnas D on määratud kahe muutuja funktsioon z f x, y . Piirkoda D nimetataksefunktsiooni f määramispiirkonnaks. See on mingi piirkond xy-tasandil. Näide 1. Poolsfääri z 1 x2 y 2 määramispiirkonnaks on ring x 2 y2 1. Funktsiooni z ln x y määramispiirkonnaks on pooltasand y x (sirgest y x ülespoole jääv tasandi osa: vaata joonist). Kahe muutja funktsioon ise esitab pinda xyz-ruumis (ruumis R 3 ). Näide 2. Funktsiooni z x2 y 2 graafikuks on pöördparaboloid (vaata allpool olevat joonist) Kahe muutuja funktsiooni f nivoojoonteks nimetatakse jooni f x, y c Näide 3. Tüüpiline näide nivoojoo

Matemaatiline analüüs II
69 allalaadimist
thumbnail
54
doc

Valemid ja mõisted

1 lim 1 + = e = 2, 7182... , x x sin x lim = 1 sin x : x , kui x 0 . x0 x Funktsiooni nimetatakse pidevaks kohal a, kui lim f ( x ) = f ( a ) . x a Funktsiooni nimetatakse pidevaks mingis piirkonnas, kui ta on pidev selle piirkonna igas punktis. 32 4.5 Funktsiooni tuletis Funktsiooni y = f ( x ) tuletiseks kohal x nimetatakse funktsiooni muudu y ja argumendi muudu x suhte piirväärtust argumendi muudu lähenemisel nullile. dy Funktsiooni tuletise tähised on y , f ( x ) , , yx . Seega dx y y = lim .

Matemaatika
1099 allalaadimist
thumbnail
8
doc

Konspekt eksamiks

10. Graameri reegel. Kui võrdse otsitavate ja võrrandite arvuga lineaarvõrrandite süsteemi maatriks A on regulaarne (DA0), siis on süsteemil üks lahend xj=Dj/DA (j=1,2,...,n) tingimus n=m Dj saadakse süsteemi determinandist D j-nda veeru asendamisel vabaliikmete veeruga. a11a12 . .d1. .a1n - Aj 1 a21a22 . .d 2 . .a2n xj = = A A.............. an1an 2. .d n . .ann 11. Tuletise mõiste ja sisuline tähendus, muutumise määr ja tuletis, tuletis ja kõvera kallak (st tõus või langus) Kui kohal x on f-ni y=f(x) muudu ja argumendi muudu jagatisel olemas piirväärtus argumendi muudu lähenemisel nullile, siis nim seda piirväärtust antud f-ni tuletiseks kohal x ja tähistatakse f´(x). f ( x + x) - f ( x ) f ' ( x ) = lim x 0 x y f ( x 0 + x ) - f ( x 0 ) = erinevuste suhe, y-i, x-i keskmise muudu määr. Kui x on väga väike, x x

Kõrgem matemaatika
213 allalaadimist
thumbnail
51
pdf

Matemaatilise analüüsi konspekt

Teoreem 3 Olgu funktsioon y =f(x) pidev lõigul [a, b] Siis mistahes väärtuse jaoks, mis asub funktsiooni vähim ja suurima väärtuse vahel m k M leidub vähemalt üks selline punkt x3 [a, b] , et f(x3)=k Järeldus: Kui funktsioon on pidev lõigul [a, b] ja f(x1)>0 ja f(x2)<0, x1 , x 2 [a, b] . Siis leidub niisugune x3 ]x1 , x 2 [ , et f ( x 3 ) = 0 © 2001 - Ivari Horm ([email protected]), Toomas Sarv 9 Funktsiooni tuletis ja selle geomeetriline tähendus. Puutuja ja normaali võrrand. Olgu antud funktsioon y = f (x) Anname argumendile x muudu x Siis funktsioon saab vastava muudu y = f ( x + x ) - f (x) Definitsioon 1 Funktsiooni y = f ( x) tuletiseks nimetatakse piirväärtust y f ( x + x) - f ( x) y ' = lim = lim x 0 x x 0 x y

Matemaatiline analüüs
11 allalaadimist
thumbnail
51
pdf

Enno Paisu konspekt

Teoreem 3 Olgu funktsioon y =f(x) pidev lõigul [a, b] Siis mistahes väärtuse jaoks, mis asub funktsiooni vähim ja suurima väärtuse vahel m k M leidub vähemalt üks selline punkt x3 [a, b] , et f(x3)=k Järeldus: Kui funktsioon on pidev lõigul [a, b] ja f(x1)>0 ja f(x2)<0, x1 , x 2 [a, b] . Siis leidub niisugune x3 ]x1 , x 2 [ , et f ( x 3 ) = 0 © 2001 - Ivari Horm ([email protected]), Toomas Sarv 9 Funktsiooni tuletis ja selle geomeetriline tähendus. Puutuja ja normaali võrrand. Olgu antud funktsioon y = f (x) Anname argumendile x muudu x Siis funktsioon saab vastava muudu y = f ( x + x ) - f (x) Definitsioon 1 Funktsiooni y = f ( x) tuletiseks nimetatakse piirväärtust y f ( x + x) - f ( x) y ' = lim = lim x 0 x x 0 x y

Matemaatiline analüüs
179 allalaadimist
thumbnail
76
pdf

Soojusõpetuse konspekt

Tallinna Ülikool Matemaatika ja Loodusteaduste Instituut Loodusteaduste osakond Soojusõpetuse lühikonspekt Tõnu Laas 2009-2010 2 Sisukord Sissejuhatus. Soojusõpetuse kaks erinevat käsitlusviisi.......................................................................3 I Molekulaarfüüsika ja termodünaamika..............................................................................................4 1.1.Molekulide mass ja mõõtmed....................................................................................................4 1.2. Süsteemi olek. Protsess. Tasakaaluline protsess.......................................................................4 1.3. Termodünaamika I printsiip......................................................................................................5 1.4. Temperatuur ja temperatuuri mõõtmine....................................................................................5

Füüsika
31 allalaadimist
thumbnail
13
pdf

Majandusmatemaatika IIE eksami kordamisküsimused

või u''=0, integreerides same u=Ax+B, kui A=1 ja B=0, siis u=x. Teiseks erilahendiks saab võtta y2=xek1x See on esimesest lineaarselt sõltumatu, kuna y2/y1 =xconst. Üldlahendiks on funktsioon : y=C1ek1x+C2xek1x 36. Diferentsiaalvõrrandi lahendi stabiilsus Uurime seda esimest järku konstantsete kordajatega lin.dif.võrrandi näite abil : y'+ay=b Tasakaaluväärtus y* on selline suurus, mis ei muutu ajas. Kui y ei muutu, siis tema tuletis aja järgi =0, seega tasakaaluväärtus y*=b/a ; a0. Kui a=0, siis y'=b, y(t)=bt+c, integreerimise constant c=y(0) y(t)=bt+y(0). Eeldame nüüd et a0, siis lineaarse DV lahendamise valemis p=a, q=b. Leiame üldlahendi : y(t)=e-t( etbdt+c)= e-t(et b/a+c)=b/a +c*e-t .Leiame konstandi c, votes t=0,c=y(0)-y*. Seegay(t)=y*+y(0)-y* e-t .Selle valemi järgi saab leida süsteemi seisundi igal ajamomendil t, arvestades algseisundit y(0) ja tasakaaluseisundit y*

Majandusmatemaatika
623 allalaadimist
thumbnail
108
doc

MATEMAATIKA TÄIENDÕPE: Valemid

MATEMAATIKA TÄIENDÕPE VALEMID JA MÕISTED KOOSTANUD LEA PALLAS 1 2 SAATEKS Käesolev trükis sisaldab koolimatemaatika valemeid, lauseid, reegleid ja muid seoseid, mille tundmine on vajalik kõrgema matemaatika ülesannete lahendamisel. Kogumikus on ka mõned kõrgema matemaatika õppimisel vajalikud mõisted, mida koolimatemaatika kursuses ei käsitletud.. 3 KREEKA TÄHESTIK Α α  alfa Ν ν  nüü Β β  beeta Ξ ξ  ksii Γ γ  gamma Ο ο  omikron Δ δ  delta Π π  pii Ε ε  epsilon Ρ ρ  roo Ζ ζ  dzeeta Σ σ  sigma Η η  eeta Τ τ  tau Θ θ  teeta Υ υ  üpsilon Ι ι  ioota Φ φ  fii Κ κ  kap

Algebra I
61 allalaadimist
thumbnail
30
docx

Sissejuhatus majandusteooriasse konspekt

SISSEJUHATUS MAJANDUSTEOORIASSE 09.09.2013 · Paberkandjal materjalid kontrolltöödes lubatud · Eamets ­ ,,Sissejuhatus majandusteooriasse" · Kontrolltööle registreerumine kohustuslik · Tõde on see, millel pole põhjendatud vastuväiteid. Tõde pole absoluutne, vaid suhteline. · Sisendid (inputs) ­ lähevad musta kasti ­ päikesepaiste, inimesed. · Väljundid (outputs) ­ kasum, uus info, looduse reostamine. · Ceteris paribus ­ üks muutub, teised konstandid jäävad samaks ehk muutus pannakse ühe tunnuse arvele Sisendid Väljundid Analüüsikeeled · Verbaalne - sõnadega saab analüüsida kõike. Kõige kergemini tulevad tahtmatud vead. Palju on ka tahtlikke vigu. · Graafiline ­ Alati teadlikku demagoogiat ei tee. Ei võimalda täpset analüüsi. Nt teljestikud P-Q. Viga jääb

Majandusteadus
89 allalaadimist
thumbnail
156
pdf

Kõrgem matemaatika

. . . . . . . . . . . . . . . . 40 4.5 Tähtsad piirväärtused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.6 Pidevad funktsioonid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.7 Funktsiooni katkevusviise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.8 Pidevate funktsioonide omadused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5 Funktsiooni tuletis ja diferentsiaal 47 5.1 Keskmine kiirus ja hetkkiirus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.2 Tuletise definitsioon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.3 Põhiliste elementaarfunktsioonide tuletised . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.4 Diferentseerimise reeglid . . . . . . . . . . . . . . .

Kõrgem matemaatika
94 allalaadimist
thumbnail
30
pdf

Loogika konspekt 1-5

1_fl_i-v L1. SISSEJUHATUS Mõtlemine on käsiteldav kui igasugune aktiivne vaimne protsess. Tulemuslikku mõtlemist iseloomustab abstraheerimine, analüüs ja süntees. Mõtlemisvahendite põhjal võib seda jaotada · kaemuslik-motoorne, · kujundlik · sõnalis-loogiline (verbaal-loogiline). Sõnalis-loogiline mõtlemine tugineb mõistetele. Verbaalne mõtlemine avaldub inimese oskuses ... · opereerida mõistetega, neid võrrelda ja analüüsida; · püstitada hüpoteese, formuleerida kontseptsioone ja teooriaid; · seletada olemasolevaid teadmisi; · saada uusi teadmisi olemasolevate põhjal. Ratsionaalne mõtlemine on järjekindel ja reeglipärane (ehk loogiline) mõtlemine. See võib olla korrigeeritud kogemusega, mille allikaks peetakse tegelikkust. Eesmärgiks on sageli tegelikkusega kohanemine. Irratsionaalne mõtlemine võib ol

Loogika
335 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun