Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Matemaatilised mõisted - sarnased materjalid

integ, muutuja, integr, maatriks, ruutm, tuletis, diferentsiaalahend, astak, miinor, veerg, detem, deter, singulaarseks, rahuldab, sümmeetriline, ühene, mitmene, piirväärtusähenemisel, geogr, puutuja, vahemaa, hospital, integraal, suvaline, summaga, asendusvõte, ositi, newtoneibniz, vahelüli, rajad, trapets, joonega, telg, sirgega, teoreem
thumbnail
28
pdf

Kõrgema matemaatika üldkursus

Crameri valemid võrrandisüsteemi (1) lahendamiseks 2. Maatriksid: liitmine, arvuga korrutamine, maatriksite korrutamine. Maatriks on ristkülikukujuline tabel, mis koosneb arvudest (tavaliselt reaalarvudest või kompleksarvudest) või mingitest muudest etteantud hulga elementidest, sealhulgas näiteks polünoomidest, funktsioonidest, diferentsiaalidest, vektoritest. Tabeli sissekandeid nimetatakse maatriksi elementideks. Kuigi maatriks on iseenesest lihtsalt tabel, pakuvad maatriksid huvi eelkõige sellepärast, et maatriksi elementidega tehtavate tehete (liitmine ja lahutamine, korrutamine ja jagamine) abil on võimalik defineerida tehted maatriksitega. Maatriks on eristatavate horisontaalsete ridade ja vertikaalsete veergudega ümarsulgudesse asetatud arvudest (või üldiselt ringi elementidest) koosnev tabel. Näiteks Maatriksi kui tabeli sissekandeid nimetatakse maatriksi elementideks

Kõrgem matemaatika
324 allalaadimist
thumbnail
13
doc

Kõrgema matemaatika eksam

1. Maatriksi mõiste, järk, tähistused, liigid. Maatriks on ristkülikukujuline arvude tabel, milles on m-rida ja n-veergu ja mis on ümbritsetud ümarsulgudega. Maatriksit tähistatakse suure tähega: Maatriksi järk tähistab maatriksi mõõtmeid: A on m*n järku maatriks. Liigid: · Ruutmaatriks (m=n) · Diagonaalmaatriks ­ ruutmaatriks, mille peadiagonaalis arvud, muud elemendid 0-d. · Ühikmaatriks ­ diagonaalmaatriksi erijuht. Peadiagonaali elemendid 1-d. Täh E. · Nullmaatriks ­ kõik nullid. Täh . 2. Tehted maatriksitega (korrutamine arvuga, liitmine, lahutamine, korrutamine). · Korrutamine arvuga: korrutades maatriksit reaalarvuga, muutuvad kõik elemendid, selle arvu korra suuremaks.

Kõrgem matemaatika
356 allalaadimist
thumbnail
22
docx

Kõrgem matemaatika 1 kordamisküsimused 2017/2018

Kõrgem matemaatika 1 kordamisküsimused 2017/2018 1. Maatriksi definitsioon. Maatriksi elemendid. Maatriksi järk. Ruutmaatriks. Lineaarsed tehted maatriksitega (liitmine ja skalaariga korrutamine). Nullmaatriks. Vastandmaatriks. Lineaarsete tehete omadused. Transponeeritud maatriks. Maatriks on arvude, funktsioonide või muude elementide korraldatud kogum × . Maatriksil on m rida ja n veergu, kus a11; a12; ...a1n; jne on maatriksi elemendid. Kui me räägime järkudest, siis esimest järku matriks on a, teist on a, a, a, a, kui räägime kolmandat järku siis a,a,a,a,a,a,a,a,a (9) Ruutmaatriksi ridade ja veergude arv on sama. Kui me räägime skalaariga korrutamisest, see tähendab lihtslat arv korrutame matriksiga

Kõrgem matemaatika
134 allalaadimist
thumbnail
22
doc

Kõrgem matemaatika

KORDAMISKÜSIMUSED 2015/2016 Kõrgem matemaatika MTMM. 00.145 (6EAP) 1. Maatriksi mõiste, järk, tähistused, liigid. Maatriks on ristkülikukujuline arvude tabel, milles on m-rida ja n-veergu ja mis on ümbritsetud ümarsulgudega. Maatriksit tähistatakse suure tähega. Kui aij on reaalarvud ning i = 1; 2;...;m ja j = 1; 2;...; n, siis tabelit: nimetatakse täpsemalt (m x n)-maatriksiks ja kasutatakse tähistusi Am x n või Amn. Arvupaari (m; n) nimetatakse maatriksi A mõõtmeteks. Tabelis paiknevaid arve aij nimetatakse maatriksi elementideks. i ­ reaindeks; j ­ veeruindeks.

Kõrgem matemaatika
212 allalaadimist
thumbnail
8
doc

Konspekt eksamiks

On eeldused ja järeldused. Teoreetiline analüüs (statistilised probleemid jäetakse kõrvale) *Mat majteaduse mudeli puhul ei arvestata kõiki aspekte, sest see on võimatu, valitakse põhifaktorid (mida asendavad muutujad) ja antakse ette seosed (võrranditena). Matemaatiline mudel koosneb võrranditest, mis kirjeldavad faktorite käitumist ja seovad muutujaid omavahel -> analüütilised eeldused -> loogilised järeldused. 3. Funktsiooni mõiste: Kui muutuja x igale väärtusele hulgas X on vastavusse seotud muutuja y väärtus, siis öeldakse, et hulgal X on määratud funktsioon. y=f(x) eeskiri; üksühene vastavus. Liigid: a) konstantne f. N. y=f(x)=7 b) polünoomid y=a0+a1x+a2x2+...+anxn n=0 konstantne f., n=1 linearne f., n=2 ruutf. (0;a0) a1-tõus c) ratsionaalf. N murrud d) mittealgebralised f. n juured, astmed, exp, log, trig. 4. Tasakaalu mõiste, turu tasakaalu mudelid (1.ja 2. ning n hüvisega)

Kõrgem matemaatika
212 allalaadimist
thumbnail
10
doc

Matemaatiline analüüs I konspekt - funktsioon

"Matemaatiline analüüs I" Funktsioon Funktsioon- Kui muutja x igale väärtusele piirkonnas X vastab muutuja y kindel väärtus, siis öeldakse, et y on muutuja x funktsioon piirkonnas X. Sõltumatu muutuja on x, sõltuv y Funktsiooni määramispiirkond-Funktsiooni y määramispiirkonnaks nimetakse argumendi x muutumispiirkonda. Funktsioonide liigid- 1. Paaris funktsioon-rahuldab tingimust f(x)=f(-x) ja see on sümmeetriline y-telje suhtes. (Nt:y=x2) 2.Paaritu funktsioon-rahuldab tingimust f(-x)=-f(x) ja see on sümmetrialine 0 punkti suhtes. (y=sinx) 3.Perioodilised funktsioonid- rahuldab tingimust f(x+T)=f(x), T on periood. 4

Matemaatiline analüüs
258 allalaadimist
thumbnail
156
pdf

Kõrgem matemaatika

. . . . . . . . . . . . 13 2 Pöördmaatriks. Lineaarvõrrandisüsteemid 15 2.1 Maatriksi pöördmaatriks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 Maatriksvõrrandite lahendamisest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3 Pöördmaatriksi leidmine valemi abil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4 Maatriksi astak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.5 Lineaarvõrrandisüsteemid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.6 Cramer'i peajuht . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.7 Gauss'i elimineerimise meetod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.8 Süsteemi üldlahend ja erilahend . . . . . . . . . . . . . . . . .

Kõrgem matemaatika
94 allalaadimist
thumbnail
13
doc

Matemaatiline analüüs 1 kordaisküsimuste vastused

Paaridf-n *Def. Y=f(x) on paarisf-n juhul kui f(-x)=f(x) x MP graafik sum y telje suhtes, Nt y=x 2 =(-x)2 3. Paaritu f- n- sel korral paaritu kui f(-x)= -f(x), x MP, graafik sümm 0-punkti suhtes 4.Perioodiline f-n-parajasti siis, kui leidub niisugune reaalarv t, et tekib võrdsus iga MP punkti puhul. Märkus: kui f-n perioodiline=> t on lõpmata palju=> min t =T ­periood=> näit ting f-nil t>0 4. Liitfunktsioon Funkts, mille argumendiks ei ole sõltumatu muutuja, vaid tema mingi funktsioon, nim liitfunkt-niks sõltumatu muutuja suhtes y=f(u) u=u(x), Märkus: sisalduvus võib olla mitmekordne 5. Põhilised elementaarfunkts. 1)astmefunkts y=xa; a IR (nii murrulised, kui negatiivsed) 2)eksponentf-n y=ax, a 1, astmef-ni puhul on muutuja konstantses astmes , eksponentf-ni puhul on muutuja muutuvas astmes 3)logaritmf-n y=log ax, a>0, a 1 4)trig. F- nid y=sinx; cosx;tanx;cotx 5)arkus f-nid y=arcsinx;... NB 2ja 3 ning 4 ja 5 on pöördf-nid

Kõrgem matemaatika
147 allalaadimist
thumbnail
14
docx

Matemaatiline analüüs I eksami kordamisküsimused vastused

Matemaatiline analüüs I Eksamiteemad 1. Muutuvad suurused: Muutuja x on argument ehk sõltumatu muutuja. Muutuja y on sõltuv muutuja. 2. Funktsioon- Muutuvat suurust y nimetatakse muutuva suuruse x funktsiooniks, kui mingi eeskirjaga on suuruse x igale väärtusele seatud vastavusse suuruse y üks väärtus Tähistused: y=f(x); y=g(x); y=H(x) Näited: s(t)=3-0,5gt²( s- kaugus maapinnast langemisel; g- raskuskiirendus) Funktsiooni esitlusviis: a. Piltlik- d. Nooldiagrammine- b

Matemaatiline analüüs 1
75 allalaadimist
thumbnail
32
doc

Matemaatika I küsimused ja mõisted vastustega

....16 22. Kirjeldada logaritmilise diferentseerimise võtet. Millistel juhtudel seda võtet rakendatakse? Tuua näide. .................................................................................................................................... 17 23. Eeskiri parameetrilisel kujul antud funktsiooni diferentseerimiseks. ......................................18 24. Eeskiri ilmutamata kujul antud funktsiooni diferentseerimiseks. ............................................18 25. Funktsiooni diferentsiaal, diferentsiaali omadused, tuua näiteid diferentsiaali kasutamisest ligikaudsel arvutamsel. .................................................................................................................. 19 26. Funktsiooni kõrgemat järku tuletis. ......................................................................................... 19 27. Kirjeldage joone puutuja ja normaali võrrandite leidmist. ...................................................... 19 28

Matemaatika
118 allalaadimist
thumbnail
8
doc

Kordamisküsimused aines "Matemaatiline analüüs I"

· Algebralised funktsioonid on funktsioonid, mis saadakse lõpliku arvu algebraliste tehte rakendamise teel. a. Täisratsionaalsed funktsioonid ehk astmefunktsioonid b. Murdratsionaalsed funktsioonid ehk kahe täisratsionaalse funktsiooni jagatis c. Irratsionaalsed funktsioonid ( sisaldavad lisaks eelnevale veel juurimist) d. Mittealgebralised funktsioonid Liitfunktsioon- on funktsioon, kus sõltuv muutuja y sõltub argumendist x mitme funktsiooni vaheldusel. Kui y=f(z) ja z=g(x) , seega saame liitfunktsiooni y=f(g(x)) . Liitfunktsioonil võib olla ka enam kui kaks koostisosa ja seega enam kui üks vahepealne muutuja. Pöördfunktsioon- pöördfunktsiooni saame, kui võtame algse funktsiooni , avaldame sealt x ja seejärel vahetame x ja y ära. Näiteks : y=2x ; x=0,5y ; y=0,5x , seega y=2x pöördfunktsioon on y=0,5x. Funktsiooni y = f(x) pöördfunktsiooniks nimetatakse funktsiooni y =( x )

Matemaatika analüüs I
159 allalaadimist
thumbnail
24
pdf

MATEMAATILINE ANALÜÜS I. KORDAMISKÜSIMUSED

• Argumentide x hulka X nimetatakse määramispiirkonnaks. • Suuruse y muutumispiirkonda Y nimetatakse muutumispiirkonnaks. Funktsioon on antud, kui on teada: a) F-ni määramispiirkond X b) Eeskiri, mis seab argumendi x igale väärtusele piirkonnas X vastavusse funktsiooni y väärtuse. 3. Ilmutamata ja ilmutatud kujul funktsioon. Näited. Ilmutatud funktsiooniks nimetatakse niisugust funktsiooni, kus funktsiooni esitava võrduse vasakul pool on ainult sõltuv muutuja y ja paremal pool muutujast x sõltuv avaldis. Ilmutamata funktsiooniks nimetatakse niisugust funktsiooni, mille väärtused leitakse x ja y siduvast võrrandist (üldjuhul f(x; y) = 0). N: ilmutatud f-nid: y = 2x+1, ilmutamata kujul: x2 + y2 = 1 4. Funktsiooni graafik (definitsioon, piltlik esitus). Funktsiooni y = f(x) graafikuks nimetatakse kõigi niisuguste punktide (x, f(x)) hulka, kus x ∈ X. Lühidalt, Funktsiooni graafik = { (X, f(x)) : x ∈ X } 5

Matemaatiline analüüs 1
26 allalaadimist
thumbnail
8
doc

Kõrgema matemaatika kordamisküsimused ja vastused

1. Maatriksi mõiste, järk, tähistused, liigid. Maatriks ­ ristkülikukujuline arvudega tabel, milles on m-rida ja n-veergu. Tähistused: (maatriksit tähistatakse suure tähega) a11 a12 ... a1n a 21 a 22 ... a2n i =1,2,..., m = A( aij ), ... ... ... ... j =1,2,..., n a m1 am2 ... a mn Maatriksi järk ­ tähistab maatriksi môôtmeid; A on m*n järku maatriks. Maatriksi liigid: 1) Ruutmaatriks: m=n; 2) Diagonaalmaatriks: a11, a22, amm - peadiagonaal (diagonaalil ei ole 0; muud elemendid 0-d); 3) Ühikmaatriks (diagonaalmaatriksi erijuht): a11 = a22 ... = amm = 1; (Täh. E); 4) Nullmaatriks: aij = 0, iga i ja j korral; (Täh ). 2. Tehted maatriksitega (korrutamine arvuga, liitmine, lahutamine, korrutamine). 1) Korrutamine arvuga: A=(aij), kR; kA=C; C=(cij), kus cij = kaij. 2) Maatriksite liitmine: (m*n) ­ ma. A, (p*q) ­ ma. B ja m=p, n=q

Matemaatika
241 allalaadimist
thumbnail
23
docx

MATEMAATILINE ANALÜÜS TÖÖ VASTUSED

paremal pool avaldis, mis võib sisaldada muutujat x ,kuid mitte y. · Ilmutamata funktsioon ­ Funktsiooni ilmutamata kujuks on võrrad, mis sisaldab x ja y läbisegi · Parameetrilisel kujul antud joon ­ Olgu antud lõigul kaks funktsiooni ja . Kirjutame nad üles süsteemina: Süsteem saab iga korral ühe kindla arvupaari, ehk tasandil punkti ristkordinaatidega . Üldiselt vastavad muutujale t ka erinevad tasandi punktid, kui muutuja t jookseb läbi kogu lõigu, siis t-le vastav punkt kujundab tasandile vastava joone. Muutujat t nimetame joone parameetriks. · Parameetrilisel kujul antud funktsioon ­ Vaateleme funktsiooni ja lisaks muutujale x ja y toome ka sisse kolmanda muutuja t (parameetri). Olgu muutuja x parameetri t funktsioon ehk , siis saab muutujat y avaldada parameetri t kaudu. tähistades saame . Võtame need kaks võrrandit kokku ühte süsteemi

Matemaatika analüüs I
104 allalaadimist
thumbnail
28
doc

Matemaatiline analüüs

Kui sümbol x tähistab hulga X suvalist elementi, siis nimetatakse sümbolit x muutujaks hulgas X 2. Tooge hulkade kohta 2 näidet! y fx () Reaalarvude-, kompleksarvude-, vektorite-, maatriksite-, kaubahalli kauba hulk. 3. Mis on operaator? Tooge 2 näidet! Eeskirja f(f()fx()) , mis näitab kuidas leida muutuja x väärtusele hulgas X vastavat muutuja x hulgas Y, nimetatakse operaatoriks. väärtust f ( x) Näited: aritmeetilised tehted reaalarvudega, aritmeetilised tehted kompleksarvudega, tehted vektoritega, tehted maatriksitega, kaubahalli kassiiri tegevus kauba hinna määramisel jne. 4. Milline operaator on determineeritud? Tooge näide!

Kõrgem matemaatika
425 allalaadimist
thumbnail
16
docx

J. Kurvitsa teooria vastused

Teoreem. Kui funktsioon y = f(x) on lõigul [a, b] pidev, vahemikus (a, b) diferentseeruv ja rahuldab tingimust f(a) = f(b), siis leidub vahemikus (a, b) vähemalt üks punkt c nii, et f'(c) = 0. Tõestus: Kuna f(x) on pidev lõigul [a, b], siis saavutab ta oma suurima ja vähima väärtuse sellel lõigul. Olgu M suurim väärtus ja m vähim väärtus. Kui M = m, siis on funktsioon lõigul [a, b] konstantne, st kõigi x [a, b] korral kehtib f(x) = M = m. Sellisel juhul on f(x) tuletis nullfunktsioon, st f(x) 0, ja teoreemi väide on täidetud iga c (a, b) korral. Edasi vaatleme juhtu, kui M m. Funktsioon võib oma absoluutse ekstreemumi saavutada kas lõigu [a, b] otspunktis või vahemikus (a, b). Oletame kõigepealt, et mõlemad absoluutsed ekstreemumid saavutatakse lõigu otspunktides a ja b. Siis on f(x) väärtus ühes otspunktis M ja teises otspunktis m ning võrratusest M m tuleneb, et f(x) v.a.artused lõigu otspunktides on erinevad

Matemaatiline analüüs
195 allalaadimist
thumbnail
37
docx

Matemaatiline analüüs l.

Üksühese funktsiooni mõiste. Olgu antud funktsioon y = f(x). Vastavalt funktsiooni definitsioonile on tegemist kujutisega, mis seab igale argumendi x väärtusele oma määramispiirkonnast vastavusse ühe kindla y väärtuse. Uksühese funktsiooni pöördfunktsioon. Üksühese funktsiooni y = f(x) pöördfunktsiooniks nimetatakse kujutist, mis seab igale f(x)-le funktsiooni f väärtuste hulgast vastavusse x-i. Pöördfunktsiooni avaldise saame, kui lahendame võrrandi y = f(x) muutuja x suhtes. Vahetavad pöördfunktsioonis kohad esialgse funktsiooni määramispiirkond ja väärtuste hulk. Olgu x = g(y) üksühese funktsiooni y = f(x) pöördfunktsioon. Siis funktsioonid f ja g kompenseerivad teineteist järgmises mõttes. g[f(x)] = x , f[g(y)] = y . Funktsiooni y = f(x) ja tema pöördfunktsiooni x = g(y) graafikud kattuvad xy-teljestikus. Kui aga pöördfunktsiooni x = g(y) avaldises muutujate x ja y kohad vahetada, st esitada ta kujul y = g(x), siis

Matemaatiline analüüs
484 allalaadimist
thumbnail
142
pdf

Matemaatiline analüüs I

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.8 L~opmatult kahanevate ja l~opmatult kasvavate suuruste v~ordlemine. 43 2.9 Funktsiooni pidevus. Katkevuspunktide liigitus. . . . . . . . . . . 45 ¨ 2.10 Uhepoolne pidevus. Pidevus hulkadel. Elementaarfunktsioonide pidevus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.11 L~oigul pidevate funktsioonide omadusi. . . . . . . . . . . . . . . . 52 3 Tuletis ja diferentsiaal 57 3.1 Tuletise, diferentseeruva funktsiooni ja diferentsiaali m~oisted. . . 57 3.2 N¨aiteid tuletiste kohta rakendustes. . . . . . . . . . . . . . . . . . 60 3.3 Tuletiste arvutamise p~ohireeglid . . . . . . . . . . . . . . . . . . . 61 3.4 Ilmutamata funktsiooni, p¨o¨ordfunktsiooni ja parameetrilise funk- tsiooni diferentseerimine. . . . . . . . . . . . . . . . . . . . . . . . 62

Matemaatika
42 allalaadimist
thumbnail
142
pdf

Matemaatilise analüüsi konspekt TTÜ's

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.8 L~opmatult kahanevate ja l~opmatult kasvavate suuruste v~ordlemine. 43 2.9 Funktsiooni pidevus. Katkevuspunktide liigitus. . . . . . . . . . . 45 ¨ 2.10 Uhepoolne pidevus. Pidevus hulkadel. Elementaarfunktsioonide pidevus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.11 L~oigul pidevate funktsioonide omadusi. . . . . . . . . . . . . . . . 52 3 Tuletis ja diferentsiaal 57 3.1 Tuletise, diferentseeruva funktsiooni ja diferentsiaali m~oisted. . . 57 3.2 N¨aiteid tuletiste kohta rakendustes. . . . . . . . . . . . . . . . . . 60 3.3 Tuletiste arvutamise p~ohireeglid . . . . . . . . . . . . . . . . . . . 61 3.4 Ilmutamata funktsiooni, p¨o¨ordfunktsiooni ja parameetrilise funk- tsiooni diferentseerimine. . . . . . . . . . . . . . . . . . . . . . . . 62

Matemaatiline analüüs
47 allalaadimist
thumbnail
5
doc

Matemaatilise analüüsi 2.kollokviumi

Pideva mitmemuutuja Kui funktsiooni z=f(x,y) on diferentseeruv kohal (x,y), siis funktsioon f on pidev sellel kohal. funktsiooni definitsioon. Kahemuutuja funktsiooni pidevuse geomeetriline sisu. Funktsioon z=f(x,y) on diferentseeruv kohal (x,y) siis, kui funktsioonil z=f(x,y) on pidevad osatuletised fx ja fy kohal (x,y). Kui hulga Rn igale punktile P(x1, . . . , xn) on vastavusse seatud muutuja u R kindel väärtus, siis öeldakse, et hulgal on Kui funktsiooni f(x,y) osatuletised fx(x,y) ja fy(x,y) on diferentseeruvad kohal (x,y), siis fxy = fyx kohal (x,y). defineeritud n-muutuja (skalaarväärtusega) funktsioon. Suurust df:=fx(x,y)dx + fy(x,y)dy, kus dx:= x ja dy:= y, nimetatakse funktsiooni f(x,y) täisdiferentsiaaliks.

Matemaatiline analüüs 2
37 allalaadimist
thumbnail
273
pdf

Lembit Pallase materjalid

11. Funktsiooni pidevuse m~oiste. Tarvilik ja piisav tingimus funktsiooni pidevuseks 12. Elementaarfunktsioonide pidevus 13. L~oigul pidevate funktsioonide omadused 14. Funktsiooni katkevuspunktid 15. Funktsiooni tuletise m~oiste, selle geomeetriline ja mehhaaniline t~olgendus 1 16. Pidevus ja diferentseeruvus 17. M~onede p~ohiliste elementaarfunktsioonide tuletised 18. Diferentseerimisreeglid 19. P¨o¨ordfunktsiooni tuletis 20. Liitfunktsiooni tuletis 21. Logaritmiline diferentseerimine 22. Ilmutamata funktsiooni tuletis 23. Parameetrilisel kujul esitatud funktsiooni tuletis 24. Funktsiooni diferentsiaal 25. K~orgemat j¨arku tuletised 26. Joone puutuja ja normaali v~orrandid 27. Rolle'i teoreem 28. Cauchy teoreem 29. Lagrange'i teoreem 30. L'Hospitali reegel 31. L'Hospitali reegel teistel m¨aa¨ramatuse juhtudel 32. Taylori valem 33

Matemaatiline analüüs
808 allalaadimist
thumbnail
54
doc

Valemid ja mõisted

trigonomeetrilise funktsiooni väärtus on null. Seepärast on otstarbekohane teada, et sin x = 0 x = n , cos x = 0 x = n + , 2 tan x = 0 x = n , n Z . 4. MATEMAATILINE ANALÜÜS 4.1 Funktsiooni üldised omadused 22 Kui muutuja x igale väärtusele piirkonnas X vastab muutuja y kindel väärtus, siis öeldakse, et y on muutuja x funktsioon piirkonnas X. Muutujat x nimetatakse funktsiooni argumendiks ehk sõltumatuks muutujaks ja vastavalt funktsiooni y ka sõltuvaks muutujaks. Argumendi x muutumispiirkonda nimetatakse funktsiooni y määramispiirkonnaks. Funktsiooni väärtused, mis vastavad kõigile argumendi väärtustele piirkonnas X, moodustavad funktsiooni muutumispiirkonna Y.

Matemaatika
1099 allalaadimist
thumbnail
22
doc

Matemaatiline analüüs I - kordamine eksamiks (ainekava järgi koostatud konspekt)

Funktsiooni y = f ( x ) , x X võib alati esitada parameetrilised kujul, näiteks: t T = X y = f (t) Vastupidine esitus, s.o. üleminek parameetriliselt kujult ilmutatud kujule ei ole alati teostatav. 5. Esitus ilmutamata kujul, s.o. võrrandi F ( x, y ) = 0 abil. Liitfunktsioon - kui y=f(u), kus u=g(x), siis öeldakse, et y on muutuja x suhtes liitfunktsioon ja kirjutatakse y=f[g(x)] Pöördfunktsioon ­ Paaris- ja paaritudfunktsioonid : *paaris ­ kui iga x X korral on f(-x)=f(x), siis nimetatakse funktsiooni f paarisfunktsiooniks piirkonnas X *paaritu ­ kui iga x X korral on f(-x)=-f(x), siis nimetatakse funktsiooni f paarituks funktsiooniks piirkonnas X Perioodiline funktsioon ­ funktsiooni f nimetatakse perioodiliseks piirkonnas X ja arvu 0 tema perioodiks, kui f ( x + ) = f ( x ) iga x X korral.

Matemaatiline analüüs i
776 allalaadimist
thumbnail
39
pdf

Matemaatiline analüüs I konspekt -Tõkestatud hulgad

hulga X punkte kui ka neid punkte, mis ei kuulu hulka X . Sisepunkt ei saa olla rajapunkt. Sisepunkt on alati kuhjumispunkt. Rajapunkt võib olla kuhjumispunkt. 1 Kordamine matemaatilise analüüsi I eksamiks matemaatika-informaatika teaduskonnas 04/05 õ.a Funktsioon, tema graafik Olgu X mingi reaalarvude hulk. Kui x tähendab mis tahes arvu hulgast X , siis öeldakse, et x on muutuv suurus ehk muutuja hulgas X . Iga arvu x X nimetatakse muutuja x väärtuseks. Definitsioon: Kui igale arvule x X on mingi eeskirja f abil seatud vastavusse üks reaalarv y , siis öeldakse, et hulgas X on määratud funktsioon y = f ( x ) ja kirjutatakse: y = f ( x ) , x X . Muutujat x nimetatakse funktsiooni argumendiks ehk sõltumatuks muutujaks ja muutujat y tema sõltuvaks muutujaks. Hulka X nimetatakse funktsiooni määramispiirkonnaks ja hulka

Matemaatiline analüüs I
73 allalaadimist
thumbnail
8
pdf

Matemaatiline analüüs II 2. kollokviumi spikker

ruumala, mis pealt on piiratud funktsiooni z=f(x,y) graafikuga, alt funktsiooni z=g(x,y) graafikuga ja küljelt Definitsioon 2. Öeldakse, et kahe muutuja funktsioonil on punktis P2(x2, y2) lokaalne miinimum, kui sellel ∭∆ 𝑓(𝜌 𝑐𝑜𝑠𝜑, 𝜌 𝑠𝑖𝑛𝜑, 𝑧)𝜌 𝑑𝜑 𝑑𝜌𝑑𝑧 .Vaatleme üleminekut sfäärkoordinaatidele, kus teisendus on kujul

Matemaatiline analüüs 2
68 allalaadimist
thumbnail
108
doc

MATEMAATIKA TÄIENDÕPE: Valemid

Seepärast on otstarbekohane teada, et sin x  0  x  n ,  cos x  0  x  n  , 2 tan x  0  x  n , n  Z . 4. MATEMAATILINE ANALÜÜS 4.1 Funktsiooni üldised omadused 22 Kui muutuja x igale väärtusele piirkonnas X vastab muutuja y kindel väärtus, siis öeldakse, et y on muutuja x funktsioon piirkonnas X. Muutujat x nimetatakse funktsiooni argumendiks ehk sõltumatuks muutujaks ja vastavalt funktsiooni y ka sõltuvaks muutujaks. Argumendi x muutumispiirkonda nimetatakse funktsiooni y määramispiirkonnaks. Funktsiooni väärtused, mis vastavad kõigile argumendi väärtustele piirkonnas X, moodustavad funktsiooni muutumispiirkonna Y.

Algebra I
60 allalaadimist
thumbnail
177
pdf

ÜHE MUUTUJA MATEMAATILINE ANALÜÜS

LTMS.00.022 ÜHE MUUTUJA MATEMAATILINE ANALÜÜS Loengukursus Tartu Ülikooli loodus- ja täppisteaduste valdkonna üliõpilastele 2019./2020. õppeaasta Toivo Leiger Joonised: Ksenia Niglas Pisitäiendused 2016–20: Märt Põldvere, Natalia Saealle, Indrek Zolk, Urve Kangro 2 Sisukord

Algebra I
8 allalaadimist
thumbnail
1080
pdf

Matemaatiline analüüs terve konspekt

Jada piirva¨ artus. ¨ Arv e. Funktsiooni piirva¨ artus. ¨ Joone asumptoodid. ¨ ~ Lopmata ¨ vaikesed ja ~ lopmata ~ suured suurused. Funktsiooni pidevus. Loigul pidevate funktsioonide omadused. Funktsiooni tuletis. Liitfunktsiooni tuletis. Po¨ ordfunktsiooni ¨ tuletis. Parameetri-liselt esitatud funktsiooni tuletis. Ilmutamata ~ funktsiooni tuletis. Logaritmiline diferentseerimine. Pohiliste elementaarfunktsioonide tuletised. ~ Korgemat ¨ jarku tuletised. Leibnizi valem. Funktsiooni diferentsiaalid. Funktsiooni kasvamine ja kahanemine

Matemaatiline analüüs 1
136 allalaadimist
thumbnail
25
doc

Algebra ja geomeetria kordamine

MAATRIKS: Maatriks ­ nimetatakse ümarsulgudesse paigutatud reaalarvude tabelit, milles on eristatavad read ja veerud. Maatriksi mõõtmed ­ Maatriksit, milles on m rida ja n veergu nimetatakse täpsemalt (m,n)- maatriksiks ning arvupaari (m,n) selle maatriksi mõõtmeteks. Maatriksi järk ­ Omadus, mis esineb ainult ruutmaatriksil: Näiteks Mat(n,n) nim. n-järku maatriksiks. Maatriksi elemendid ­nimetatakse reaalarve, milledest maatriks koosneb. Maatriksi ja maatriksite hulga tähistused ­ Maatrikseid tähistatakse tavaliselt suurte ladina tähtedega: A, B,....X, Y, Z. Maatriksite elemente tähistatakse vastavate väikeste ladina tähtedega, mis võivad olla varustatud ka indeksitega: a, b, c, jne. Kõigi (kõikvõimalike mõõtmetega) maatriksite hulka tähistame edaspidi Mat abil ning kõigi (m, n)-maatriksite hulka tähistame edaspidi Mat(m, n) abil. Ruutmaatriks ­maatriks, mille ridade arv on võrdne veergude arvuga, s.t

Algebra ja geomeetria
62 allalaadimist
thumbnail
81
pdf

Kõrgem matemaatika / lineaaralgebra

Kõrgema matemaatika kordamisküsimused 1. Maatriksi definitsioon. Maatriksi elemendid. Lineaarsed tehted maatriksitega (liitmine ja skalaariga korrutamine). Nullmaatriks. Transponeeritud maatriks 2. Maatriksite korrutise definitsioon. Korrutamise omadused ja seosed lineaarsete tehete ning korrutamise vahel. Ühikmaatriks. 3. Teist ja kolmandat järku determinandid. 4. Permutatsiooni definitsioon. Inversiooni definitsioon. n-järku determinandi definitsioon. Determinandi põhiomadused 5. Maatriksi elemendi minor. Alamdeterminant. Determinandi arendus rea ja veeru järgi. Determinantide teooria põhivalem. 6. Regulaarse maatriksi mõiste

Algebra I
198 allalaadimist
thumbnail
104
pdf

Konspekt

.. := .. .. .. .. .. .. .. . . . . . . . an1 an2 . . . ann an1 an2 . . . ann Determinandi det A ridade ja veergude all m~oeldakse maatriksi A ustkriipse | · | nimetame determinandi m¨arkideks. ridu ja veerge. P¨ I. Determinandid 3 1.8 Miinor ja alamdeterminant Maatriksi A = (aij ) elemendi aij miinoriks Mij nimetatakse de- terminanti, mille saame maatriksi A determinandist i-nda rea ja j- inda veeru eemaldamisel. Elemendi aij alamdeterminandiks ehk al- aiendiks nimetatakse arvu Aij := (-1)i+j Mij . Suurust gebraliseks t¨ (-1)i+j nimetame elemendi aij ja alamdeterminandi Aij m¨ argi- teguriks. 1.9 Determinandi (induktiivne) definitsioon arku determinandi (n - 1)-j¨arku determinantide

Lineaaralgebra
510 allalaadimist
thumbnail
48
doc

Lineaaralgebra täielik konspekt

püstjoontega): A = (aij ) = [aij ] = aij , (1.1) kus i = 1,...,n on rea number, j = 1,...,m on veeru number. Arve aij nimetatakse maatriksi elementideks. Nii et esimene alumine indeks näitab, mitmendas reas asub element , ja teine alumine indeks - mitmendas veerus asub element. Maatriksi suurust saab väljendada valemiga: ridade arv x veergude arv. Antud maatriks (1.1) on suurusega n x m ja seda saab kirjutada järgmiselt : An x m või dim A = n x m (dimensioon ­ suurus). 3 -4 2 Näide 1: Antud maatriks A = . Siin A2x3 , a12 = - 4, a23 = -6,5 . 0 1 - 6,5 Maatriksid on võrdsed oma vahel , kui on võrdsed kõik vastavad elemendid antud matriksites, s.t. A = B , kui aij = bij , i = 1,...,n , j = 1,...,m . Definitsioon 2

Kõrgem matemaatika
858 allalaadimist
thumbnail
57
rtf

Maatriksid

a = aij A = (aij ) = ij , (1.1) kus i = 1,...,n on rea number, j = 1,...,m on veeru number. Arve aij nimetatakse maatriksi elementideks. Nii et esimene alumine indeks näitab, mitmendas reas asub element , ja teine alumine indeks - mitmendas veerus asub element. Maatriksi suurust saab väljendada valemiga: ridade arv x veergude arv. Antud maatriks (1.1) on suurusega n x m ja seda saab kirjutada järgmiselt : An x m või dim A = n x m (dimensioon ­ suurus). 3 - 4 2 A = Näide 1: Antud maatriks 0 1 - 6,5 . Siin A , a = - 4, a = -6,5 . 2x3 12 23 Maatriksid on võrdsed oma vahel , kui on võrdsed kõik vastavad elemendid antud matriksites, s.t. A = B , kui aij = bij , i = 1,...,n , j = 1,...,m

Matemaatika
283 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun