Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge
Add link

"logaritmiline tuletis" - 46 õppematerjali

thumbnail
21
pdf

Funktsiooni tuletis (jätk) loeng 6

Funktsiooni tuletis (jätk) - + sin - sin = 2 sin cos 2 2 Funktsiooni y = sin x tuletis Teoreem: Funktsiooni y = sin x tuletis on cos x. x + x - x x + x + x Tõestus: y = sin( x + x) - sin x = 2 sin cos 2 2 x x = 2 sin cos x + 2 2 x x x 2 sin cos x + sin y 2 2 2 cos x + x = = x x x 2 2 1...

Matemaatika
67 allalaadimist
thumbnail
9
doc

Matemaatiline analüüs - konspekt I

Funktsioon: Funktsiooni mõiste. Olgu antud 2 muutuvat suurust x ja y. Funktsiooniks (ehk üheseks funktsiooniks) nimetatakse kujutist mis seab suuruse x igale väärtusele tema muutumispiirkonnast vastavusse suuruse y ühe kindla väärtuse. Muutujat x nimetatakse seejuures sõltumatuks muutujaks ehk argumendiks ja muutujat y sõltuvaks muutujaks. Funktsioone tähistatakse tavaliselt tähtedega f; g; u; v; ; jne. Olgu antud funktsioon f mille argumendiks on x ja s~oltuvaks muutujaks y. Muutuja y väärtust milleks funktsioon f kujutab argumendi x nimetatakse funktsiooni f väärtuseks kohal x ja tähistatakse sümboliga f(x). Seega, me võime kirjutada seose y = f(x) ; (1.1) mis väljendab muutuja y "seotust" argumendiga x funktsiooni f kaudu. Mõnikord kasutatakse funktsiooni ja sõltuva muutuja tähistamiseks ühte ja sama sümbolit. Sellisel juhul seos (1.1) omab kuju y = y(x)....

Matemaatiline analüüs
592 allalaadimist
thumbnail
3
doc

MATEMAATILINE ANALÜÜS I

ÕPPEAINE MATEMAATILINE ANALÜÜS I (kood YMM3731) PROGRAMM Õppeaine eesmärk · Anda ühe muutuja funktsiooni diferentsiaal- ja integraalarvutuse teoreeti-lised alused. · Õpetada lahendama mainitud teooriaga seotud põhilisi ülesandeid. · Näidata esitatud teooria võimalikke rakendusi praktikas ja teistes teadus- harudes. · Harjutada üliõpilasi matemaatilise sümboolikaga. Maht: 5 EAP ainepunkti, nädalatundide arv 2-0-2. Eeldusained: pole. Õppeaine sisu (orienteeruva loenguteks jaotusega): 1. Kasutatav sümboolika. Funktsiooni mõiste ja omadused. Elementaarfunktsioonid. 2. Jada piirväärtus. Arv e. 3. Funktsiooni piirväärtus. Joone asümptoodid. Lõpmata väikesed ja lõpmata suured suurused. Funktsiooni pidevus. Lõigul pidevate funktsioonide omadused. 4. Funktsiooni tuletis...

Matemaatika analüüs I
206 allalaadimist
thumbnail
4
pdf

Matemaatilise analüüsi kollokvium II spikker(2LK)

(Tuletise lineaarsuse tõestus, st näidata, et saame konstandi tuletise märgi alt välja tuua ning Definitsioon: Funktsiooni y = f (x) nimetatakse rangelt kasvavaks punktis x, kui leidub selline summa tuletis on tuletiste summa). Lause: Kui funktsioonid f(x) ja g(x) on diferentseeruvad positiivne arv δ, et suvaliste x1 ϵ (x - δ; x) ja x2 ϵ (x; x + δ) korral f (x1) < f (x) < f (x2). punktis x ja cR on konstant, siis selles punktis on diferentseeruv ka funktsioon cf(x) Lause: Kui funktsioon y = f (x) on rangelt kasvav punktis x, siis leidub selline δ > 0, Tõestus:Korrutise tuletisest y’=f’(x)g(x)+f(x)g’(x) lähtuvalt, kui cR on konstant, siis y=c*f(x) tuletis on y’=f(x)*c’+f ’(x)*c=0*f(x)+c*f ’(x)=c*f ’(x) L...

Matemaatiline analüüs i
66 allalaadimist
thumbnail
22
docx

Matemaatika analüüs I konspekt

Ratsionaalarve saab väljendada kahe täisarvu suhtena ja lõpmatu perioodilise kümnendmurruna. 1 −5 1 1 Nt 4 ; 1 ; 3 =0,(3); 7 . Lõpmatud mitteperioodilised kümnendmurrud moodustavad irratsionaalarvude hulga. Nt. π; e; √2 ; √3 . Ratsionaalarvude ja irratsionaal arvude hulgad moodustavad kokku reaalarvude hulga. Arvtelg ___ lõpmatu sirge, millel on määratud suund, 0-punkt ja pikkusühik. Igale reaalarvule vastab arvteljel üks punkt ja vastupidi. Reaalarvude hulgal on selline omadus, et iga kahe reaalarvu vahel on veel ratsionaalarve ja irratsionaalarve. Reaalarvu absoluutväärtus. Olgu arv x. Selle arvu absoluutväärtus moodul I x I on defineeritud järgmiselt: I x I = x, kui x ≥ 0 I x I = -x, kui x < 0 Nt. I 3 I = 3 ; I -5 I = 5 ; I 0 I = 0 Arvu absoluutväärtus muudab arvtel...

Matemaatika analüüs i
20 allalaadimist
thumbnail
1
pdf

Diferentsiaal- ja integraalarvutuse põhivalemid

Ühe muutuja funtsiooni diferentsiaal- ja integraalarvutuse põhivalemid Funktsioon Diferentseerimisvalem Põhiintegraal Konstant a '=0 adx =axC n-1 n1 Astmefunktsioon x ' ' ' =nx x x ' ' dx = n1 C 1 2 x '= 2 x xdx = 3 x 3C x x x Eksponentfunktsioon a ' =a ln a a x dx= lna a C e x dx=e...

Matemaatiline analüüs
384 allalaadimist
thumbnail
28
doc

põhivara aines füüsikaline maailmapilt

Indiviidi põhiproblee- miks on tunnetada oma suhet maailmaga ­ omada adekvaatset infot maailma kohta ehk maailma- pilti. Selle info mastaabihorisondi rõhutamisel kasutatakse maailmaga samatähenduslikku mõistet universum. Maailma käsitleva info mitmekesisuse rõhutamisel kasutatakse maailma kohta mõistet loodus. Religioosses käsitluses kasutatakse samatähenduslikku mõistet ­ (Jumala poolt) loodu. Inimene koosneb ümbritseva reaalsuse (mateeria) objektidest (aine ja välja osakestest) ning infost nende objektide paigutuse ning vastastikmõju viiside kohta. Selle info põhiliike nimetatakse religioossetes tekstides hingeks ja vaimuks. Hing on inimeses sisalduva info see osa, mis on omane kõigile indiviididele (laiemas tähenduses ­ kõigile el...

Füüsika
207 allalaadimist
thumbnail
33
doc

Füüsika teooria

Mida uurib klassikaline füüsika ja millisteks osadest ta koosneb? ´Uurib aine ja välja kõige üldisemaid omadusi ja liikumise seadusi. Koosneb: Relativistlik kvantmehaanika, kvantmehaanika, erirelatiivsusteooria, klassikaline mehaanika, üldrelatiivsusteooria. 2. Mis on täiendusprintsiip? Ükski uus teooria ei saa tekkida tühjale kohale. Vana teooria on uue teooria piirjuhtum. Nii on omavahel seotud erinevad valdkonnad. Puudub kindel piir valdkondade vahel. 3. Mis on mudel füüsikas? Tooge kaks näidet kursusest. Mudel on keha või nähtuse kirjeldamise lihtsustatud vahend, mis on varustatud matemaatiliste võrranditega. Mudel võimaldab kirjeldada füüsikalise obiekti antud hetkel vajalikke omadusi tõsiteaduslikult. Näiteks: ainepunkt, absoluutselt elastne keha. 4. Mis on mateeria ja millised on tema osad? Mateeria on kõik meid ümbritsev loodus. Mateeria esineb aine ja välja kujul. 5. Mis on ruum ja aeg? Ruum ja aeg on mateeria ja selle liiku...

Füüsika
372 allalaadimist
thumbnail
151
pdf

PM Loengud

Jaaniso Pinnasemehaanika 1. SISSEJUHATUS Kõik ehitised on ühel või teisel viisil seotud pinnasega. Need kas toetuvad pinnasele vundamendi kaudu, toetavad pinnast (tugiseinad), on rajatud pinnasesse (süvendid, tunnelid) või ehitatud pinnasest (tammid, paisud) (joonis 1.1). a) b) c) d) J o o n is 1 .1 P in n a s e g a s e o tu d e h i tis e d v õ i n e n d e o s a d .a ) p i n n a s e le t o e t u v a d ( m a d a l - j a v a iv u n d a m e n t) b ) p i n n a s t t o e t a v a d ( t u g is e in a d ) c ) p in n a s e s s e r a j a tu d ( tu n n e li d , s ü v e n d i d d ) p in n a s e s t r a j a tu d ( ta m m i d , p a is u d ) Ehitiste koormuste ja muude mõjurite tõttu pinnase pingeseisund muutub, pinnas deformeerub ja võib puruneda nagu k...

Pinnasemehaanika, geotehnika
195 allalaadimist
thumbnail
273
pdf

Lembit Pallase materjalid

-a. su¨gissemestril 3,5 AP 4 2-0-2 E S Dots. Lembit Pallas TTU¨ Matemaatikainstituut V-404, tel. 6203056 e-post: lpallas@staff.ttu.ee K¨asitletavad teemad on toodud punktide kaupa. Neid punkte tuleb vaadelda ka kui kollokviumide ja eksami teooriak¨ usimusi. 1. Funktsiooni m~oiste ja esitusviisid 2. Funktsioonide liigitamine (paaris- ja paaritud funktsioonid, perioodilised funktsioo- nid, kasvavad ja kahanevad funktsioonid) 3. P¨o¨ordfunktsioon 4. Liitfunktsioon 5. Jada piirv¨aa¨rtus 6. Funktsiooni piirv¨aa¨rtus ¨ 7. Uhepoolsed piirv¨aa¨rtused 8. L~opmatult kasvavad ja l~opmatult kahanevad suurused 9. Piirv¨a¨artusteoreemid 10. L~opmatult kahanevate suuruste v~ordlemine 11. Funktsiooni pidevuse m~oiste. Tarvilik ja piisav tingimus funktsiooni pidevuseks 12. Elementaarfu...

Matemaatiline analüüs
796 allalaadimist
thumbnail
13
doc

Matemaatiline analüüs 1 kordaisküsimuste vastused

Muutuvad suurused. Def. 1 *Suurusi, mis omand erinevaid väärtusi(vaadeldavas protsessis) nim muutuvateks suurusteks. *Suurusi, mis omand. konstantseid püsivaid väärtusi nim jäävateks suurusteks e. konstantideks. *Tähistus: x,y,z...u,v,w,t *NT ühtlane liikumine-> kiirus konstantne v, teepikkus ja aeg muutuvad *Muutuvad suurused on tavaliselt reaalarvud-> geom võime esitada sirgel *absoluutsed konstandid- mistahes protsessis vaadeldavad suurused: =3,14..., e =2,71 1. väärtused on diskreetsed x: x1,x2,x3 (arvjada) 2. väärtused omand pideva alamhulga reaalteljel (+joonised!): *X={x IR|axib} lõik * X={x IR|a0 (joonis) 2. Funktsiooni mõiste Olgu antud 2 suurust x-muutumisp. X, y-muutumisp. Y *Def.1 Me nim funktsiooniks kujutust, mis seab igale x väärtusele piirkonnas X...

Kõrgem matemaatika
147 allalaadimist
thumbnail
13
doc

Mehaanika ja soojus

Newtoni seadused I ­ seadus: On olemas sellised taustsüsteemid, mille suhtes liikuvad kehad säilitavad oma kiiruse jäävana, kui neile ei mõju teised kehad või teiste kehade mõjud kompenseeruvad. Järeldused: *Taussüsteem, kus see seadus kehtib, on inertsiaalne (Maa suhtes paigal või liiguvad jääva kiirusega). Ka heliotsentriline tausüst (süst., mille keskpunkt ühtib Päikesega ning mille teljed on suunatud vastavalt valitud tähtedele) on inertsiaalne. Seega, iga süst., mis liigub heliotsentrilise taussüst suhtes ühtlaselt ja sirgjooneliselt, on inertsiaalne. Maa liikumine Päikese ja tähtede suhtes on kiirendusega liikumine (ringliikumine) ­ ei ole inertsiaalne (kuigi vahel võib nii vaadelda, sest kiirendus on väga väike). *On olemas ka teissuguseid taustsüsteeme, kus see seadus ei kehti ­ mitteinertsiaalsed taustsüst-d (keha kiirus muutub ilma, et teda mõjutaks mingi teine keha ­ näit kui buss hakkab järsku liikuma, siis...

Füüsika
94 allalaadimist
thumbnail
16
doc

Füüsika eksam2

Lähtudes alljärgnevast joonisest, tuletage vedeliku voolamise pidevuse võrrand. 64. Formuleerige Bernoulli seadus ja nimetage võrrandis esinevad liidetavad. Mis on nende põhjuseks? Dünaamiline rõhk tekib vee liikumise ehk kineetilise energia tõttu, hüdrostaatiline voolava aine nurga all olemise ehk selle potentsiaalse energia tõttu ja staatiline on väline rõhk. 65. Kasutades alljärgnevat joonist, tuletage harmooniliselt võnkuva keha võrrand so. liikumisvõrrand ja perioodi arvutamise valem. k m F a l x 0 x Perioodi arvutamise valem: 2 T = 0 66. Kasutades alljärgnevat j...

Füüsika
425 allalaadimist
thumbnail
75
doc

Soojusautomaatika eksami vastused

Põhimõisted automatiseeritud tootmise alalt. Automaatikasüsteemide klassifikatsioon nende otstarbe järgi. Näited. Automatiseeritud tootmise põhimõisted: 1. Objekt 2. Regulaator 1. Andur 2. Tajur 3. Automaatikasüsteem Automaatikasüsteemide klassifikatsioon otstarbe järgi: 1. Automaatreguleerimise süsteemid (ARS) 2. Distantsioonjuhtimise süsteemid (DJS) 3. Tehnoloogilise kaitse süsteemid 4. Automaatblokeeringu süsteemid (ABS) 5. Reservseadme automaatse käivitamise süsteem (RAKS) 6. Automaatsed tehnoloogilise kontrolli süsteemid (ATKS) 7. Signalisatsioonisüsteemid (SS) valgus ja helisüsteemid 1. Tehnoloogiline SS andmed seadmete töö ja üksikute parameetrite kohta 2. Avarii SS teatavad võimalikest avariilistest olukordadest ja juba tekkinud avariidest 3. tsentraalsed SS on ette nähtud signalisatsioonisüste...

Soojusautomaatika
102 allalaadimist
thumbnail
42
docx

Automaatika konspekt

Automaatika süsteeme kasutatakse tootmisprotsessis, kus ta kõrvaldab inimese osavõtu selles protsessis ja võimaldab teostada selliseid protsesse mis on inimesele kahjulikud. Automaatika süsteemi kuuluvad automaat kontrollimine ja automaat reguleerimine. Esimene neist teostab mõõtmisi ja teine teostab reguleerimist e. parameetri hoidmist kindlal tasemel või parameetri hoidmist kindlal tasemel reguleerimisprogrammi järgi. Automaatika süsteemi nimetatakse automatiseerimiseks see võib olla osaline näiteks üks tööpink või tööliin või tsehh ja samuti võib esineda täielik automatiseerimine, sel juhul automatiseeritakse mitu tehnoloogilist protsessi...

Elektriaparaadid
106 allalaadimist
thumbnail
78
pdf

Majandusmatemaatika

MUDELID MAJANDUSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Mudeli mõiste. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Matemaatiliste mudelite liigitus ja elemendid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Matemaatilise mudeli struktuur ja sisu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. FUNKTSIOONID JA NENDE ALGEBRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Arvud ja nende hulgad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6...

Raamatupidamise alused
398 allalaadimist
thumbnail
24
docx

Füüsika teooriaeksami küsimused+vastused

Mida uurib klassikaline füüsika ja millistest osadest ta koosneb? Mis on täiendusprintsiip? Mis on mudel füüsikas? Tooge kaks näidet kursusest. Uurib aine ja välja kõige olulisemaid omadusi ja liikumise seadusi. Füüsikaline seos, katse, hüpotees, mudel. Klassikaline füüsika koosneb staatikast, kinemaatikast ja dünaamikast. Niels Henrik David Bohr (1885 -1962, Taani, Nobeli preemia 1922): Ükski uus teooria ei saa tekkida täiesti tühjale kohale. Vana teooria on uue teooria piirjuhtum. Nii on omavahel seotud erinevad valdkonnad. Puudub kindel piir valdkondade vahel. Mudel on keha või nähtuse kirjeldamise lihtsustatud vahend, mis on varustatud matemaatilis...

Füüsika
703 allalaadimist
thumbnail
12
doc

MEHAANIKA JA MOLEKULAARFÜÜSIKA, PÕHIMÕISTED NING SEADUSED

Need ongi füüsikalised objektid. Objekt on see, millele tegevus on suunatud. Füüsikaline suurus on füüsikalise objekti mõõdetav iseloomustaja (karakteristik). Füüsika objekt (loodusnähtus) on olemas ka ilma inimeseta. Füüsikaline suurus on inimlik vahend objekti kirjeldamiseks. Suuruse mõõtmine on võrdlemine mõõtühikuga. Rahvusvaheline mõõtühikute süsteem SI kasutab 7 füüsikalist suurust põhisuurustena. Nende suuruste mõõtühikud on põhiühikud. Kõik teised suurused ja ühikud on määratud vastavalt põhisuuruste ning põhiühikute kaudu. Põhisuurused on: pikkus, aeg, mass, aine hulk, temperatuur, voolutugevus ja valgustugevus. Nende ühikud on vastavalt: meeter, sekund, kilogramm, mool, kelvin, amper ja kandela. Skalaarne suurus on esitatav vaid ühe mõõtarvuga, millele lisandub mõõtühik. Skalaarsed suurused on il...

Füüsika
150 allalaadimist
thumbnail
29
doc

Põhivara füüsikas

Indiviidi põhiproblee- miks on tunnetada oma suhet maailmaga ­ omada adekvaatset infot maailma kohta ehk maailma- pilti. Selle info mastaabihorisondi rõhutamisel kasutatakse maailmaga samatähenduslikku mõistet Universum. Maailma käsitleva info mitmekesisuse rõhutamisel kasutatakse maailma kohta mõistet loodus. Religioosses käsitluses kasutatakse samatähenduslikku mõistet ­ (Jumala poolt) loodu. Inimene koosneb ümbritseva reaalsuse (mateeria) objektidest (aine ja välja osakestest) ning infost nende objektide paigutuse ning vastastikmõju viiside kohta. Selle info põhiliike nimetatakse religioossetes tekstides hingeks ja vaimuks. Vaatleja on inimene, kes kogub ja töötleb infot maailma kohta. Vaatleja tunnusteks on tahe (valikuvaba- duse olemasol...

Füüsika
113 allalaadimist
thumbnail
2
docx

Kollokvium II

10 Funktsiooni tuletis DEF 1.Funktsiooni y=f(x) tuletiseks kohal x nim. funktsiooni y=f(x) muudu y ja argumendi muudu x suhte piirväärtust, kui argumendi muut läheneb nullile. f´(x)=limy/x, piirprotsessis x->0 DEF 2. Kui funktsioonil f(x) on tuletis kohal x, siis öeldakse, et funktsioon on diferentseeruv punktis x. f´(x0) <->f(x) D(x0) DEF 3. Funktsiooni y=f(x) parempoolseks tuletiseks kohal x nim. suurust f´(x+)=limy/x, piirprotsessis x->0+ DEF 4. Funktsiooni y=f(x) vasakpoolseks tuletiseks kohal x nim. suurust f´(x-)=limy/x, piirprotsessis x->0- 1.11 Liitfunktsiooni tuletis. Pöördfunktsiooni tuletis. Parameetriliselt esitatud funktsiooni tuletis. Ilmutamata funktsiooni tuletis. Logaritmiline diferentseerimine. Vaata näiteid vihikust! 1.12 Põhiliste elementaarfunktsioonide tuletised. 1.13 Kõrgemat järku tuletised DEF 1. Kui funktsioonil f´(x) eksisteerib tuletis, siis seda tuletist nim. funktsiooni y=f(x) teiseks tuletiseks ehk...

Matemaatiline analüüs
143 allalaadimist


Uutele kasutajatele e-mailiga aktiveerimisel
10 punkti TASUTA

Konto olemas? Logi sisse

Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun