Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

Lineaaralgebra eksam - sarnased materjalid

vektor, maatriks, vektorit, vektorruum, vektorid, vektorruumi, lahend, veeru, teisendus, kompleksarv, sqrt, omavektor, kompleksarvu, determinant, veerg, veergu, kujutus, tehted, korrutamine, parajasti, maatriksite, liitmine, teisenduse, skalaarkorrutis, omaväärtus, reeper, astak, hüpertasand, võrrandisüsteem, reaalarv, lineaarsed, ruutmaatriks
thumbnail
104
pdf

Konspekt

. . . . an1 an2 . . . ann an1 an2 . . . ann Determinandi det A ridade ja veergude all m~oeldakse maatriksi A ustkriipse | · | nimetame determinandi m¨arkideks. ridu ja veerge. P¨ I. Determinandid 3 1.8 Miinor ja alamdeterminant Maatriksi A = (aij ) elemendi aij miinoriks Mij nimetatakse de- terminanti, mille saame maatriksi A determinandist i-nda rea ja j- inda veeru eemaldamisel. Elemendi aij alamdeterminandiks ehk al- aiendiks nimetatakse arvu Aij := (-1)i+j Mij . Suurust gebraliseks t¨ (-1)i+j nimetame elemendi aij ja alamdeterminandi Aij m¨ argi- teguriks. 1.9 Determinandi (induktiivne) definitsioon arku determinandi (n - 1)-j¨arku determinantide Defineerime n-j¨ kaudu arendusvalemiga a11 a12 ... a1n a21 a22 ... a2n det A := . .. .. .. .

Lineaaralgebra
510 allalaadimist
thumbnail
9
doc

Lineaaralgebra

i = -1 või i 2 = -1 ; Kaht kompleksarvu z = a + bi ja z = a - bi , mis erinevad ainult imaginaarosa märgi poolest, nimetatakse kaaskompleksarvudeks. Kokkuleppe põhjal 1) kaht kompleksarvu z1 = a1 + b1i ja z2 = a2 + b2i loetakse võrdseteks ( z1 = z2 ) , kui a1 = a2 ja b1 = b2 , s.t. kui nende reaalosad on võrdsed ja imaginaarosad on võrdsed; 2) kompleksarv võrdub nulliga, s.o. z = a + bi = 0 siis ja ainult siis, kui a = 0 ja b = 0 . Tähistame punkti A ( a ; b ) polaarkoordinaadid tähtedega ja r ( r 0 ) , lugedes pooluseks koordinaatide alguspunkti ja polaarteljeks x-telje positiivse suuna. Siis kehtivad seosed: a = r cos , b = r sin . Järelikult saab kompleksarvu z esitada kujul z = a + bi = r cos + ir sin ehk

Lineaaralgebra
920 allalaadimist
thumbnail
5
docx

Lineaaralgebra Eksami küsimuste vastused

trigonomeetriline kuju tähistame nurk X-teljel ja vektori pikkus r ,siis a=rcos ja b=rcos.avaldist z=r(cos+isin) ongi trigonomeetriline kuju. Arvutamine z1*z2=r1r2, 3. K.arvu astendamine ja juurimine. astendamine On võimalik kui k-arv on esitatud trig.kujul z=r(cos+isin), astendamise kasutatakse korrutamise reeglit z1*z2=r1r2 juurimine Igal k-arvul z=r(cos+isin)0 on parajasti n juurt ,anname k väärtused (1,2,3....n-1) 4. Geomeetrilised vektorid,lineaartehted ja nende omadused. Geomeetrilised vektorid on suunatud lõigud,a-algus punk,b-lõpp punkt( või ) on võrdsed kui need on,samasuunalised ja ühepikused.ruumis võib olla mis tahes punkt iga vektori ja p.A-le leidub p.B .kui vektori alg ja lõpp punk langevad kokku siis see on null-vektor.vektorite + = . lineaartehted­ on vektorite liitmine ja skalaar korrutmine omadused ­ , , (null vektor olemas olu), (vastand vektori olemas olu), , 5

Lineaaralgebra
950 allalaadimist
thumbnail
9
docx

Lineaaralgebra

z2 r2 3) Kompleksarvude juurimine. astendamine On võimalik kui k-arv on esitatud trig.kujul z=r(cos +isin ), astendamise kasutatakse korrutamise reeglit z1*z2=r1r2 [ cos ( 1+ 2 ) +isin( 1+ 2) ] juurimine Igal k-arvul z=r(cos +isin ) 0 on parajasti n juurt + 2 k +2 k cos + isin n n ,anname k väärtused (1,2,3....n-1) n n z= r ¿ 4) Vektorruumi mõiste, vahetud järeldused aksioomidest. Vektorruum on-mittetühi hulk V mille elementitega saab teha 2 tehet.1)liitmine-2le ( , V on )elemendile on pandud + V vastandisse. 2) skalaarkorrutamine- vastavuse elemet( C V on pandud arvule( C R ja hulga elemendile ( V ) .vektorruumi element-on vektor. 5) Vektorite lineaarne sõltuvus ja sõltumatus. Lineaarse s~oltuvuse tarvilik ja piisav tingimus.

Matemaatiline analüüs 2
32 allalaadimist
thumbnail
14
doc

KT spikker

1.Lineaarse võrrandisüsteemi definitsioon. Võrrandisüsteemi kordajad, vabaliikmed, lahend. Süsteemi maatriks ja laiendatud maatriks. Lineaarse võrrandi all mõistetakse võrrandit kujul a1 x1 + a2 x2 + ... + an xn = b , (1) kus a1 , a2 , ... , an ja b on fikseeritud arvud ning x1 , x2 , ... , xn on tundmatud. Arvu b nimetatakse vaadeldava võrrandi vabaliikmeks, arve a1 , a2 , ... , an aga tema kordajateks. Def. 1. Võrrandi (1) lahendiks nimetatakse selliseid tundmatute x1 , x2 , ... , xn väärtusi c1 , c2 , ..

Lineaaralgebra
265 allalaadimist
thumbnail
4
doc

Lineaar algebra teooria kokkuvõte

tundmatute arv n on sõltumatud. Sellist võrrandisüsteemi nimetatakse lineaarseks võrrandisüsteemiks, sest otsitavad suurused x1.. xn esinevad ainult lineaarsetes tehetes, st neid on vaid liidetud ja skalaariga korrutatud. Def. Arvude järjendit c1.. cn nim lvs lahendiks, kui tundmatute asendamisel nende arvudega (loomulikus järjekorras, st x1 = c1.. xn = cn) on süsteemi kõik võrrandid rahuldatud. Võrrsüsteemi nim kooskõlaliseks, kui tal leidub vähemalt 1 lahend. Kui lahendid puuduvad, nim sõsteemi vasturääkivaks. Võrrsüs kõigi lahendite hulka nim võrrsüs lahendihulgaks e üldlahendiks. Igal lvs-l kas lahend puudub, on ühene lahend või on lõpmata palju lahendeid. Cramer. Def. Öeldakse, et lvs-i korral on tegemist Crameri peajuhuga, kui 1)tundmatute arv võrdub võrrandite arvuga 2)võrrsüs kordajate maatriksi determinant erineb nullist. Crameri peajuhul {a11x1+.. +a1nxn=b1 ..;.. an1x1+.

Lineaaralgebra
863 allalaadimist
thumbnail
4
pdf

Lineaaralgebra I osaeksam 2013

Kompleksarvuks z nimetatakse avaldist z = a + bi, (1) kus a ja b on reaalarvud ja i on nn. imaginaarühik, mis on määratud võrdustega i = - 1 või i 2 = -1 . Kaht kompleksarvu z = a + bi ja z = a - bi , mis erinevad ainult imaginaarosa märgi poolest, nimetatakse kaaskompleksarvudeks. Kokkuleppe põhjal 1) kaht kompleksarvu z1 = a1 + b1i ja z 2 = a 2 + b2 i loetakse võrdseteks ( z1 = z 2 ) , kui a1 = a 2 ja b1 = b2 , s.t. kui nende reaalosad on võrdsed ja imaginaarosad on võrdsed; 2) kompleksarv võrdub nulliga, s.o. z = a + bi = 0 siis ja ainult siis, kui a = 0 ja b = 0. z = a + bi = r cos + i sin ehk z = r (cos + i sin ) Avaldist võrduse paremal poolel nimetatakse kompleksarvu z = a + bi trigonomeetriliseks kujuks; suurust r nimetatakse kompleksarvu z mooduliks ja suurust selle kompleksarvu argumendiks. 2. Kompleksarvude liitmise, lahutamise, korrutamise ja jagamise valemid. Trigonomeetrilisel kujul antud kompleksarvude korrutamise, jagamise, astendamise ja juurimise valemid.

Lineaaralgebra
416 allalaadimist
thumbnail
19
doc

Õppematerjal

1 VEKTORALGEBRA PÕHIMÕISTEID DEFINITSIOON. Suurusi, mis on iseloomustatud oma 1) arvväärtuse (pikkuse), 2) sihi ja 3) suunaga, nimetatakse vektoriteks. Tähistame neid a, b,... . MÄRKUS. Geomeetriliselt on vektor a määratud kahe punktiga oma alguspunktiga A ja lõpp-punktiga B. Tähistame a = AB, kusjuures: 1) arvväärtuse määrab punktide vaheline kaugus, 2) sihi määrab punktidega antud sirge s(A,B), 3) suund on määratud punktide järjestusega. OLULISED VEKTORID: Vektoreid, mille arvväärtus (pikkus) on üks, nimetatakse ühikvektori- = 1. teks. Kasutatakse tähistust e, st e

Kõrgem matemaatika
383 allalaadimist
thumbnail
19
doc

VEKTORALGEBRA PÕHIMÕISTEID

1 VEKTORALGEBRA PÕHIMÕISTEID DEFINITSIOON. Suurusi, mis on iseloomustatud oma 1) arvväärtuse (pikkuse), 2) sihi ja 3) suunaga, nimetatakse vektoriteks. Tähistame neid a, b,... . MÄRKUS. Geomeetriliselt on vektor a määratud kahe punktiga oma alguspunktiga A ja lõpp-punktiga B. Tähistame a = AB, kusjuures: 1) arvväärtuse määrab punktide vaheline kaugus, 2) sihi määrab punktidega antud sirge s(A,B), 3) suund on määratud punktide järjestusega. OLULISED VEKTORID: Vektoreid, mille arvväärtus (pikkus) on üks, nimetatakse ühikvektori- = 1. teks. Kasutatakse tähistust e, st e

Kõrgem matemaatika
50 allalaadimist
thumbnail
25
doc

Algebra ja geomeetria kordamine

MAATRIKS: Maatriks ­ nimetatakse ümarsulgudesse paigutatud reaalarvude tabelit, milles on eristatavad read ja veerud. Maatriksi mõõtmed ­ Maatriksit, milles on m rida ja n veergu nimetatakse täpsemalt (m,n)- maatriksiks ning arvupaari (m,n) selle maatriksi mõõtmeteks. Maatriksi järk ­ Omadus, mis esineb ainult ruutmaatriksil: Näiteks Mat(n,n) nim. n-järku maatriksiks. Maatriksi elemendid ­nimetatakse reaalarve, milledest maatriks koosneb. Maatriksi ja maatriksite hulga tähistused ­ Maatrikseid tähistatakse tavaliselt suurte ladina tähtedega: A, B,....X, Y, Z. Maatriksite elemente tähistatakse vastavate väikeste ladina tähtedega, mis võivad olla varustatud ka indeksitega: a, b, c, jne. Kõigi (kõikvõimalike mõõtmetega) maatriksite hulka tähistame edaspidi Mat abil ning kõigi (m, n)-maatriksite hulka tähistame edaspidi Mat(m, n) abil. Ruutmaatriks ­maatriks, mille ridade arv on võrdne veergude arvuga, s.t

Algebra ja geomeetria
62 allalaadimist
thumbnail
81
pdf

Kõrgem matemaatika / lineaaralgebra

Kõrgema matemaatika kordamisküsimused 1. Maatriksi definitsioon. Maatriksi elemendid. Lineaarsed tehted maatriksitega (liitmine ja skalaariga korrutamine). Nullmaatriks. Transponeeritud maatriks 2. Maatriksite korrutise definitsioon. Korrutamise omadused ja seosed lineaarsete tehete ning korrutamise vahel. Ühikmaatriks. 3. Teist ja kolmandat järku determinandid. 4. Permutatsiooni definitsioon. Inversiooni definitsioon. n-järku determinandi definitsioon. Determinandi põhiomadused 5. Maatriksi elemendi minor. Alamdeterminant. Determinandi arendus rea ja veeru järgi. Determinantide teooria põhivalem. 6. Regulaarse maatriksi mõiste

Algebra I
198 allalaadimist
thumbnail
8
doc

Kõrgema matemaatika kordamisküsimused ja vastused

1. Maatriksi mõiste, järk, tähistused, liigid. Maatriks ­ ristkülikukujuline arvudega tabel, milles on m-rida ja n-veergu. Tähistused: (maatriksit tähistatakse suure tähega) a11 a12 ... a1n a 21 a 22 ... a2n i =1,2,..., m = A( aij ), ... ... ... ... j =1,2,..., n a m1 am2 ... a mn Maatriksi järk ­ tähistab maatriksi môôtmeid; A on m*n järku maatriks. Maatriksi liigid: 1) Ruutmaatriks: m=n; 2) Diagonaalmaatriks: a11, a22, amm - peadiagonaal (diagonaalil ei ole 0; muud elemendid 0-d); 3) Ühikmaatriks (diagonaalmaatriksi erijuht): a11 = a22 ... = amm = 1; (Täh. E); 4) Nullmaatriks: aij = 0, iga i ja j korral; (Täh ). 2. Tehted maatriksitega (korrutamine arvuga, liitmine, lahutamine, korrutamine). 1) Korrutamine arvuga: A=(aij), kR; kA=C; C=(cij), kus cij = kaij. 2) Maatriksite liitmine: (m*n) ­ ma. A, (p*q) ­ ma. B ja m=p, n=q

Matemaatika
241 allalaadimist
thumbnail
26
docx

Lineaaralgebra eksami kordamisküsimused vastused

d= ( x 2−x 1 ) + ( y 2− y 1 ) + ( z 2 + z 1) 2 3. Vektori mõiste-Vektor on suunatud lõik millel on kindel algus- ja lõpp-punkt. 4. Nullvektor-Vektorit, mille pikkus on null, nimetatakse nullvektoriks ja tähistatakse sümboliga . Nullvektori suund on määramata. 5. Ühikvektor- Kui vektori pikkus on 1 6. vektorite liitmine-rööpkülikureegel: Vektorite a ja b summaks nimetatakse niisugust vektorit c, mis väljub nende ühisest alguspunktist ja on niisuguse rööpküliku diagonaal, mille külgedeks on liidetavad vektorid. Kolmnurga reegel-vektorite liitmisel viiakse teise liidetava alguspunkt esimese liidetava lõpp-punkti. Vektorite a ja b summaks on vektor mis kulgeb esimese liidetava alguspunktist teise liidetava lõpp-punkti. 7. vektorite lahutamine- Vektorite a ja b vaheks nimetatakse vektorit d, millel on omadus b+d=a. Kahe vektori vahe leidmiseks viikse nad ühisesse

Matemaatiline analüüs 1
124 allalaadimist
thumbnail
156
pdf

Kõrgem matemaatika

. . . . . . . . . . . . . . . . . . . . . . . . 106 12.4 Integraalide rakendusi statistikas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 12.5 Euler'i integraalid * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 12.6 Irratsionaalfunktsioonide integreerimine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 12.7 Trigonomeetriliste funktsioonide integreerimine . . . . . . . . . . . . . . . . . . . . . . . . . 111 13 Vektorid ruumis 113 13.1 Suunatud lõikude hulk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 13.2 Vabavektorid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 13.3 Projektsioonivektor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 13.4 Kohavektorid . . . . . . . . . . . . . . . . . . . . .

Kõrgem matemaatika
94 allalaadimist
thumbnail
3
pdf

Lineaaralgebra, II osaeksami vastused, 2013

1.Lineaarse võrrandisüsteemi definitsioon. Võrrandisüsteemi kordajad, vabaliikmed, lahend. Süsteemi maatriks ja laiendatud maatriks. Lineaarseks võrrandisüsteemiks nimetatakse lõplikust arvust lineaarseist võrrandeist koosnevat a11 x1 + a12 x 2 + ...a1n xn = b1 süsteemi. Tema üldkuju on: (3) a 21 x2 + a 22 x 2 + ...a 2 n x n = b2 Arve a ij nimetatakse võrrandisüsteemi .................... a m1 x1 + a m 2 x 2 + ...a mn x n = bm kordajateks, arve b1 , b2 ,..., bm aga süsteemi vabaliikmeteks

Lineaaralgebra
179 allalaadimist
thumbnail
2
pdf

Lineaaralgebra

i 1 või i²1 =r(cos+sin) Transporeeritudmaatriks: Maatriksi A transporeeritud maatriks AT saadakse kui Kompleksarv: kirjutatakse maatriksi A read vastavateks veergudeks. Avaldis x iy,kus x ja y on reaalarvud ja i on niinimetatud Kordumine: nA imaginaarühik. pAT

Lineaaralgebra
91 allalaadimist
thumbnail
13
doc

Kõrgema matemaatika eksam

1. Maatriksi mõiste, järk, tähistused, liigid. Maatriks on ristkülikukujuline arvude tabel, milles on m-rida ja n-veergu ja mis on ümbritsetud ümarsulgudega. Maatriksit tähistatakse suure tähega: Maatriksi järk tähistab maatriksi mõõtmeid: A on m*n järku maatriks. Liigid: · Ruutmaatriks (m=n) · Diagonaalmaatriks ­ ruutmaatriks, mille peadiagonaalis arvud, muud elemendid 0-d. · Ühikmaatriks ­ diagonaalmaatriksi erijuht. Peadiagonaali elemendid 1-d. Täh E. · Nullmaatriks ­ kõik nullid. Täh . 2. Tehted maatriksitega (korrutamine arvuga, liitmine, lahutamine, korrutamine). · Korrutamine arvuga: korrutades maatriksit reaalarvuga, muutuvad kõik elemendid, selle arvu korra suuremaks.

Kõrgem matemaatika
356 allalaadimist
thumbnail
22
doc

Kõrgem matemaatika

KORDAMISKÜSIMUSED 2015/2016 Kõrgem matemaatika MTMM. 00.145 (6EAP) 1. Maatriksi mõiste, järk, tähistused, liigid. Maatriks on ristkülikukujuline arvude tabel, milles on m-rida ja n-veergu ja mis on ümbritsetud ümarsulgudega. Maatriksit tähistatakse suure tähega. Kui aij on reaalarvud ning i = 1; 2;...;m ja j = 1; 2;...; n, siis tabelit: nimetatakse täpsemalt (m x n)-maatriksiks ja kasutatakse tähistusi Am x n või Amn. Arvupaari (m; n) nimetatakse maatriksi A mõõtmeteks. Tabelis paiknevaid arve aij nimetatakse maatriksi elementideks. i ­ reaindeks; j ­ veeruindeks.

Kõrgem matemaatika
212 allalaadimist
thumbnail
5
doc

algebra konspekt

Joonte parameetrilised võrrandid Joone parameetrilisteks võrranditeks ruumis nim võrandeid kujul x=x(t) y=y(t) z=z(t) kui esimene võrrand esitab x-i t-funktsioonina, teine võrrand esitab y-i ja kolmas z-i muutuja funktsioonina. Muutujat t nim parametriks. Tasandil nim joone parameetrilisteks võrranditeks võrrandeid x=x(t) y=y(t) Sirge parameetrilised võrrandid Sirge on täielikult määratud kui on teada nullist erinev sirgega paralleelne vektor, nn sirge sihivektor s ja üks punkt M1 sirgel. M on meelevaldne punkt sirgel, siis OM1=r1 ja OM=r. Punktid M1 ja M määravad vektori M1M=r-r1. See vektor on paralleelne sihivektoriga. Võrrand r-r1=st on sirge parameetriline võrrand vektorkujul. Võrrandit y= kx+b nim sirge võrrandiks tõusu ja algordinaadi järgi. Siin arv k on sirge tõus ehk x-telje positiivse suuna ja sirge vahelise nurga tangens. Arvu b nim sirge algordinaadiks.See on sirge ja y-telje lõikepunkti ordinaat.

Algebra ja Analüütiline...
131 allalaadimist
thumbnail
28
pdf

Lineaaralgebra ja analüütiline geomeetria konspekt

2016 aasta sügis) Ristkoordinaadid. Kui ruumis on antud ristkoordinaadisüsteem, siis ruumi iga punkt P on üheselt määrastud ristkoordinaatidega x, y, z, kus x on punkti P ristprojektsioon abstsissteljele, y on punkti P ristprojektsioon ordinaatteljele ja z on punkti P ristprojektsioon aplikaateljele. Kirjutame P(x, y, z). Kahe punkti vaheline kaugus. Kui P1(x1, y1, z1), P2(x2, y2, z2) on ruumi punktid, siis kaugus d punktide P1 ja P2 vahel on määratud valemiga Vektori mõiste Vektor on suunatud lõik alguspunktiga punktis A ja lõpp-punktiga punktis B. Nullvektor Eukleidilises ruumis (näiteks tasandil) on nullvektoriks määramata suunaga vektor, mille pikkus on null. Ühikvektor Kui vektori pikkus on 1, siis teda nimetatakse ühikvektoriks. Vektorite liitmine ja lahutamine Lahutamine toimub sama põhimõtte järgi. Reaalarvu ja vektori korrutis. Vektori pikkus Vektori pikkuseks loetakse sellele vektorile vastava sirglõigu AB pikkust

Algebra ja analüütiline...
105 allalaadimist
thumbnail
5
doc

Crameri teoreem lineaarsete võrrandisüsteemide lahendamiseks

See teoreem kehtib meelevaldsete lineaarsete võrrandisüsteemide lahendamiseks, kus võrrandite ja tundmatute arvud on võrdsed. Lisaks peavad võrrandisüsteemid olema korrastatud. Kui lineaarse võrrandisüsteemi maatriksi determinant on nullist erinev, siis avalduvad tundmatud murdudena, mille nimetajaks on süsteemi maatriksi determinant ja mille lugejad on maatriksi, mis saadakse süsteemi maatriksist vastava tunmatu kordajate veeru asendamisel vabaliikmete veeruga, determinandid. Kui maatriks täidab Crameri teoreemi eeldusi, siis öeldakse, et tegemist on Crameri peajuhtumiga. Seega Crameri peajuhtumil 1) m=n, 2) |A| 0. Tähendab, Crameri peajuhul on lineaarsel võrrandisüsteemil üksainus lahend, mis avaldub valemitega x1=|A1|/|A| x2=|A2|/|A| .. xn=|An|/|A| Determinantide omadused, determinandi arendus rea (veeru) järgi Omadus 1. Transponeerimisel (ridade ja veergude ringivahetamisel) detrminant ei

Lineaaralgebra
177 allalaadimist
thumbnail
48
pdf

Maatriksid

tundi loenguid ja sama palju harjutusi. Iseseisvaks t¨o¨ oks on ette n¨ahtud 80 tundi. Semestri jooksul toimub 20 kahetunnilist loengut ja 20 kahetunnilist harjutustundi. Loengutest kolm esimest peat¨ ukki on p¨ uhendatud algebrale ja kolm viimast peat¨ ukki anal¨ uu¨tilisele geomeetriale. Algebra peat¨ ukkideks on 1) maatriksid ja determinandid, 2) vektorruum u ¨le reaalarvude ning 3) lineaarv~orrandis¨ usteemid. Anal¨ uu ¨tilise geomeetria omad on aga 4) vek- toralgebra, 5) sirged ja tasandid ning 6) ellips, h¨ uperbool, parabool ja u ¨levaade teist j¨arku pindadest. K¨aesolevat ~oppeainet loetakse matemaa- tika-informaatika, f¨ uu ¨sika-keemia ja haridusteaduskonna u ¨li~opilastele.

Algebra ja geomeetria
55 allalaadimist
thumbnail
96
pdf

ALGEBRA JA GEOMEETRIA

tundi loenguid ja sama palju harjutusi. Iseseisvaks t¨o¨ oks on ette n¨ahtud 80 tundi. Semestri jooksul toimub 20 kahetunnilist loengut ja 20 kahetunnilist harjutustundi. Loengutest kolm esimest peat¨ ukki on p¨ uhendatud algebrale ja kolm viimast peat¨ ukki anal¨ uu¨tilisele geomeetriale. Algebra peat¨ ukkideks on 1) maatriksid ja determinandid, 2) vektorruum u ¨le reaalarvude ning 3) lineaarv˜orrandis¨ usteemid. Anal¨ uu ¨tilise geomeetria omad on aga 4) vek- toralgebra, 5) sirged ja tasandid ning 6) ellips, h¨ uperbool, parabool ja u ¨levaade teist j¨arku pindadest. K¨aesolevat ˜oppeainet loetakse matemaa- tika-informaatika, f¨ uu ¨sika-keemia ja haridusteaduskonna u ¨li˜opilastele.

Algebra ja geomeetria
19 allalaadimist
thumbnail
24
doc

ANALÜÜTILINE GEOMEETRIA RUUMIS, VEKTORID

Kui vektori algus on punktis A ja lõpp punktis B, siis tähistatakse AB , a . Vektor on kindla sihi, suuna ja pikkusega lõik. Siht on teda kandva sirge siht. Suund on alguspunktist lõpp-punkti poole. Definitsioon. Vektori mooduliks nimetatakse tema pikkust, see on lõigu AB pikkust ja tähistatakse   AB  AB , a  a . Vektori moodul on skalaarne mittenegatiivne suurus. Definitsioon. Nullvektoriks nimetatakse vektorit, mille algus- ja lõpp-punkt langevad kokku. Nullvektori moodul on alati võrdne nulliga, tema suund ei ole määratud. Definitsioon. Ühikvektoriks nimetatakse vektorit, mille moodul (pikkus) on 1. Definitsioon. Kollineaarseteks vektoriteks nimetatakse vektoreid, mis asuvad ühel sirgel või paralleelsetel sirgetel.   Kollineaarseid vektoreid tähistatakse a b .  

Matemaatika
38 allalaadimist
thumbnail
8
doc

Konspekt eksamiks

(0;a0) a1-tõus c) ratsionaalf. N murrud d) mittealgebralised f. n juured, astmed, exp, log, trig. 4. Tasakaalu mõiste, turu tasakaalu mudelid (1.ja 2. ning n hüvisega) Tasakaalu mõiste- valitud üksteisega seotud mutujate väärtuste niisugune seis, et süsteemi seisund säilub. Turu tasakaalu mudelid: 1 hüvisega: 3 muutujat Qd, Qs, P eeldus Qd-Qs=0, Qd, Qs 4 parameetrit a, b, c, d>0 d ja b tõusud Q d=a-bP langev sirge Lahend: Qd, Qs, P Qd=Qs=Q lahend järjestatud paar (P;Q) Qs=-c+dP tõusev sirge 2 hüvisega: Qd1-Qs1=0 Qd2-Qs2=0 Qd1=a0+a1P1+a2P2 Qd2=a0+a1P1+a2P2 Qs1=b0+b1P1+b2P2 Qs2=b0+b1P1+b2P2 (a0-b0)+(a1-b1)P1+(a2-b2)P2=0 n hüvisega: kõik hüvised sõltuvad kõigist hindadest. Koefitsendid arvulisedlahend arvuline. 5. Maatriksid ja vektorid, maatriksitehted, vektortehted. Maatriks: Olgu i reaindeks ja j veeruindeks siis x1-1.ve-s, xj- j-ndas veerus, aij­ i-nda võrrandi j-nda muutuja koef

Kõrgem matemaatika
212 allalaadimist
thumbnail
48
doc

Lineaaralgebra täielik konspekt

M.Latõnina 1. MAATRIKSID 1.1. Üldmõisted Definitsioon 1. Maatriksiks nimetatakse riskülikujulist arvuliste elementidega tabelit, mis sisaldab n rida ja m veergu : Lühidalt maatriksit võib tähistada erinevate sulgudega (või kahekordsete püstjoontega): A = (aij ) = [aij ] = aij , (1.1) kus i = 1,...,n on rea number, j = 1,...,m on veeru number. Arve aij nimetatakse maatriksi elementideks. Nii et esimene alumine indeks näitab, mitmendas reas asub element , ja teine alumine indeks - mitmendas veerus asub element. Maatriksi suurust saab väljendada valemiga: ridade arv x veergude arv. Antud maatriks (1.1) on suurusega n x m ja seda saab kirjutada järgmiselt : An x m või dim A = n x m (dimensioon ­ suurus). 3 -4 2

Kõrgem matemaatika
858 allalaadimist
thumbnail
54
doc

Valemid ja mõisted

MATEMAATIKA TÄIENDÕPE VALEMID JA MÕISTED KOOSTANUD LEA PALLAS 1 2 SAATEKS Käesolev trükis sisaldab koolimatemaatika valemeid, lauseid, reegleid ja muid seoseid, mille tundmine on vajalik kõrgema matemaatika ülesannete lahendamisel. Kogumikus on ka mõned kõrgema matemaatika õppimisel vajalikud mõisted, mida koolimatemaatika kursuses ei käsitletud.. 3 KREEKA TÄHESTIK - alfa - nüü - beeta - ksii - gamma - omikron - delta - pii - epsilon - roo - dzeeta - sigma - eeta - tau - teeta - üpsilon - ioota - fii - kapa - hii - lambda - psii - müü - oomega

Matemaatika
1099 allalaadimist
thumbnail
57
rtf

Maatriksid

1.1. Üldmõisted Definitsioon 1. Maatriksiks nimetatakse riskülikujulist arvuliste elementidega tabelit, mis sisaldab n rida ja m veergu : Lühidalt maatriksit võib tähistada erinevate sulgudega (või kahekordsete püstjoontega): [ ] a = aij A = (aij ) = ij , (1.1) kus i = 1,...,n on rea number, j = 1,...,m on veeru number. Arve aij nimetatakse maatriksi elementideks. Nii et esimene alumine indeks näitab, mitmendas reas asub element , ja teine alumine indeks - mitmendas veerus asub element. Maatriksi suurust saab väljendada valemiga: ridade arv x veergude arv. Antud maatriks (1.1) on suurusega n x m ja seda saab kirjutada järgmiselt : An x m või dim A = n x m (dimensioon ­ suurus). 3 - 4 2 A =

Matemaatika
283 allalaadimist
thumbnail
3
docx

Determinant

koosneb teistest liidetavatest, ülejäänud elemendid jäävad samale kohale. Om6 Determinandi väärtus ei muutu, kui tema mingile reale/veerule liita või lahutada mistahes arvuga korrutatud teatud teine rida/veerg. Om7 Kahe n- järku determinandi A ja B korrutis A B on arvuliselt võrdne teatava uue n- järku determinandiga C, mille i-nda rea ja j-nda veeru ühine element cij saadakse determinandi A i-nda rea ja determinandi B j-nda veeru vastavate elementide korrutamisel ning saadud tulemuste liitmisel. Om8 Kui determinandi mingi rea/veeru kõik elemendid on nullid, siis võrdub determinant nulliga. Om9 Kui determinandis kõik allpool/ülal peadiagonaali paiknevad elemendid on nullid, siis võrdub determinandi väärtus tema peadiagonaali elementide korrutisega ehk pealiikmega.

Lineaaralgebra
240 allalaadimist
thumbnail
108
doc

MATEMAATIKA TÄIENDÕPE: Valemid

MATEMAATIKA TÄIENDÕPE VALEMID JA MÕISTED KOOSTANUD LEA PALLAS 1 2 SAATEKS Käesolev trükis sisaldab koolimatemaatika valemeid, lauseid, reegleid ja muid seoseid, mille tundmine on vajalik kõrgema matemaatika ülesannete lahendamisel. Kogumikus on ka mõned kõrgema matemaatika õppimisel vajalikud mõisted, mida koolimatemaatika kursuses ei käsitletud.. 3 KREEKA TÄHESTIK Α α  alfa Ν ν  nüü Β β  beeta Ξ ξ  ksii Γ γ  gamma Ο ο  omikron Δ δ  delta Π π  pii Ε ε  epsilon Ρ ρ  roo Ζ ζ  dzeeta Σ σ  sigma Η η  eeta Τ τ  tau Θ θ  teeta Υ υ  üpsilon Ι ι  ioota Φ φ  fii Κ κ  kap

Algebra I
60 allalaadimist
thumbnail
2
doc

Lineaar algebra teooria2

(reaalarvuline juur) ja 2) nA = fi + 2kPi., st A = Fi+2kPi/n , k Z. Arvestame ka seda, et osa juuri langevad omavahel kokku, st ws = wt, kui As = At + 2kPi, k Z. Nii saame, et erinevaid juuri on täpselt n: nRjz = nRJr(cos(fi + 2kPi/n) + isin( fi + 2kPi/ n)); k = 0; 1;.. ; n - 1: Tehted kompleksarvudega algebralisel ja trigonomeetrilisel kujul. Kompleksarvude juurimine ja juurte graafiline kujutamine. Piirkondade kujutamine komplekstasandil. Vektorruum Vektorruumi mõiste. Aritmeetiliste ja geomeetriliste vektorite vektorruum. Vektorite lineaarne sõltuvus ja sõltumatus Vektorite lineaarse sõltuvuse ja sõltumatuse definitsioonid. Vektorite hulga lineaarse sõltuvuse tarvilik ja piisav tingimus. Vektorruumi baas ja mõõde. Vektori koordinaadid. Eukleidiline vektorruum Vektorite skalaarkorrutis. Cauchy-Bunjakovski võrratus. Ühikvektor, kahe vektori vaheline nurk. Meetriline maatriks, vektorite skalaarkorrutise leidmine analüütilisel kujul.

Lineaaralgebra
478 allalaadimist
thumbnail
9
doc

Lineaarsete algebraliste võrrandite süsteem

x f X= 2 , F= 2 . ... ... x f n n Kui m < n , siis on alamääratud süsteem, osa tundmatuid jääb määramata, kui m > n , siis on ülemääratud süsteem, lahend võib üldse puududa, kui m = n , siis on üks lahend kui det A 0 . Homogeense võrrandsüsteemi vabaliige on null ehk AX = 0 . Homogeensel võrrandsüsteemil esineb alati triviaalne lahend X = 0 . Homogeensel võrrandsüsteemil on m = n korral mittetriviaalsed lahendid ainult juhul, kui det A = 0 . Kui homogeensel võrrandsüsteemil on üheks mittetriviaalseks lahendiks x1 bx1

Matemaatika
74 allalaadimist
thumbnail
1
docx

Lineaari eksami materjal

Determinandid Kompleksarvud Lineaarkujutus ja ­teisendus Ruutvormid Def.1-eeskirja £, mis seab hulga V igale elemendile x Kui hulgas on määratud mingisugune tehe ja selle hulga mistahes kahe Kahe vektorruumi V ja W korral määratud kujutust nimetatakse F= ruutvorm, lineaarvorm: vastavusse hulga W teatava elemendi y, nimetatakse kujutuseks elemendiga sooritatud tehte tulemus osutub alati selle sama hulga lineaarkujutuseks, kui on täidetud tingimus £(*+)=*£() Ruutvormi kordajatest saab moodustada nxn järku hulgast V hulka W

Lineaaralgebra
253 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun