Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

Laevakere kuju ja omadused - sarnased materjalid

kere, parda, veeliini, rein, raudsalu, loengud, laevakere, süvis, ahtri, tahvel, teoreetilise, kiilu, tasandit, tasandite, tekil, paralleelset, tasandis, kujust, pardale, ketta, pindalad, arvutust, lõikamisel, kumer, ujuvusvaru, pindu, horisontaalse, väliskuju, jagab, vöörtääv, lastimärk, aastaaega, troopikas, magedas, iseloomustuse, tasandile
thumbnail
27
doc

Laeva ujuvus ja mereomadused

Kapten Rein Raudsalu MNI Loengud Eesti Mereakadeemias Teema 5. Koostatud 30.12..2001. Laevade ehitus. Täiendatud 23.11.2004. Laevade ehitus. Teema 5. Laeva ujuvus ja mereomadused. 5.1. Ujuvus. Ujuvuseks nimetatakse laeva võimet seista vee peal (ujuda) teatud asendis ja kanda endal ettenähtud lasti. Rahulikul (vaiksel) veel mõjuvad laevale tema enda raskusjõud ja temal paiknevate lastide raskusjõud

Laevaehitus
232 allalaadimist
thumbnail
88
docx

Ujuvus, mere- ja eksplomadused

Kapten Rein Raudsalu MNI Loengud Eesti Mereakadeemias Teema 3. Koostatud 30.12..2004. Laevade ehitus. Täiendatud 23.07.2012. Laevade ehitus. Teema 3. Laeva ujuvus, mere- ja ekspluatatsiooniomadused. Selles teemas vaadeldakse laeva mere- ja ekspluatatsiooniomadusi ning neid iseloomustavaid näitajaid. Pärast selle teema omandamist õppur  omab algteadmisi laeva ujuvusest, mahulistest ja kaalulistest näitajatest;

Ametijuhend
31 allalaadimist
thumbnail
17
doc

Transpordilaevade üldomadused

Kapten Rein Raudsalu MNI Loengud Eesti Mereakadeemias Teema 3. Koostatud 30.12..2001. Laevade ehitus. Täiendatud 23.11.2004. Laevade ehitus. Teema 3. Transpordilaevade üldomadused. 1. Transpordilaeva arhitektuurilis-konstruktiivse tüübi üldskeem. Laevad erinevad üksteisest nii väljanägemise kui ka konstruktsiooni poolest. Laevade mitmesuguste arhitektuuriliste ja konstruktsiooniliste vahele ranget piiri tõmmata ei ole

Laevaehitus
65 allalaadimist
thumbnail
29
doc

Laevade arhitektuur

Kapten Rein Raudsalu MNI Loengud Eesti Mereakadeemias Teema 3. Koostatud 30.12..2001. Laevade ehitus. Täiendatud 23.11.2004. Laevade ehitus. Teema 3. Transpordilaevade väliskuju ja arhitektuurilis- konstruktsioonilised omapärad. 3.1 Transpordilaeva arhitektuurilis-konstruktiivse tüübi üldskeem. Laevad erinevad üksteisest nii väljanägemise kui ka konstruktsiooni poolest. Laevade

Laevade ehitus
44 allalaadimist
thumbnail
34
doc

Laevaruumid ja ehituse detailid

Kapten Rein Raudsalu MNI Loengud Eesti Mereakadeemias Teema 9. Koostatud 30.12..2001. Laevade ehitus. Täiendatud 23.11.2004. Laevade ehitus. Teema 8. Laevaruumid ja ehituse detailid 9.1 Tekiehitised ja tekihooned. Tekiehitis - see on peatekist kõrgemal paiknev ehitis, mille laius on võrdne laeva laiusega või mille välisseinad ei ole pardast kaugemal kui 0,04 laeva laiust. Parrastest

Laevade ehitus
57 allalaadimist
thumbnail
9
doc

Laevateooria

Laevageomeetria Käikuvus lainetuses Mõisted, tähised ja ühikud IMO ringkirjaga (IMO MSC/Circ. 920 15.06.1999) on Lastimise ja püstu- vuse tüüpjuhendis rahvusvaheliselt kohustuslikud laevanduses kasutatavad mõisted, tähised ja ühikud, mis on alljärgnevas tabelis. Term Mõiste Tähis SI-ühik After perpendicular Ahtri loodsirge AP - Fore perpendicular Vööri loodsirge FP - Baseline Baasliin BL - Heel angle Kreeninurk ( ) °/rad Length overall Laeva maksimaalne pikkus LOA m Length between perpendiculars Pikkus loodsirgete vahel LPP m

Laevandus
77 allalaadimist
thumbnail
70
doc

Exami küsimused ja vastused laevaehituses

tugevus ja üleuhutavuskindlus (risk of flooding) tormisel merel. Tekke on laeval sageli mitu, kõige ülemist nimetatakse ülatekiks või peatekiks. Teised tekid, mida tavaliselt nummerdatakse ­ näiteks 2.tekk, moodustavad lastiruumid ­ tvintekid. Kõige alumine on alati trümm, mille ruumide numeratsioon algab vöörist. Lastimis-lossimisseadmed on selle laeva ekspluatatsioonis määrava tähtsusega ning laeva silueti peamine eksimatu tunnus. Laeva lastimisel tuleb sageli ahtri süvist suurendada, et sõukruvi oleks optimaalsel sügavusel. Selleks on laeval ballastveemahutid e. -tankid, et muuta laeva trimmi. Eriti efektiivsed on selleks ahterpiigi ja vöörpiigi ballastveetankid. Kahekordse e. topeltpõhja ja laeva põhja vahelised ruumid on kasutusel kütuse, joogi- ja tarbevee ning ballasti tankidena. Masinaruum e. masinaosakond (MO) on tavaliselt ahtri trümmi ja ahterpiigi vahel. See on

Laevaehitus
277 allalaadimist
thumbnail
75
doc

Eksamipiletite küsimused ja vastused

laeva tugevus ja üleuhutavuskindlus (risk of flooding) tormisel merel. Tekke on laeval sageli mitu, kõige ülemist nimetatakse ülatekiks või peatekiks. Teised tekid, mida tavaliselt nummerdatakse ­ näiteks 2.tekk, moodustavad lastiruumid ­ tvintekid. Kõige alumine on alati trümm, mille ruumide numeratsioon algab vöörist. Lastimis-lossimisseadmed on selle laeva ekspluatatsioonis määrava tähtsusega ning laeva silueti peamine eksimatu tunnus. Laeva lastimisel tuleb sageli ahtri süvist suurendada, et sõukruvi oleks optimaalsel sügavusel. Selleks on laeval ballastveemahutid e. -tankid, et muuta laeva trimmi. Eriti efektiivsed on selleks ahterpiigi ja vöörpiigi ballastveetankid. Kahekordse e. topeltpõhja ja laeva põhja vahelised ruumid on kasutusel kütuse, joogi- ja tarbevee ning ballasti tankidena. Masinaruum e. masinaosakond (MO) on tavaliselt ahtri trümmi ja ahterpiigi vahel. See on kasulik osalise lastimise puhul ­ lihtne on saada sobiv trimm ­ ja ka

Laevaehitus
112 allalaadimist
thumbnail
75
doc

Laevade ehitus

laeva tugevus ja üleuhutavuskindlus (risk of flooding) tormisel merel. Tekke on laeval sageli mitu, kõige ülemist nimetatakse ülatekiks või peatekiks. Teised tekid, mida tavaliselt nummerdatakse ­ näiteks 2.tekk, moodustavad lastiruumid ­ tvintekid. Kõige alumine on alati trümm, mille ruumide numeratsioon algab vöörist. Lastimis-lossimisseadmed on selle laeva ekspluatatsioonis määrava tähtsusega ning laeva silueti peamine eksimatu tunnus. Laeva lastimisel tuleb sageli ahtri süvist suurendada, et sõukruvi oleks optimaalsel sügavusel. Selleks on laeval ballastveemahutid e. -tankid, et muuta laeva trimmi. Eriti efektiivsed on selleks ahterpiigi ja vöörpiigi ballastveetankid. Kahekordse e. topeltpõhja ja laeva põhja vahelised ruumid on kasutusel kütuse, joogi- ja tarbevee ning ballasti tankidena. Masinaruum e. masinaosakond (MO) on tavaliselt ahtri trümmi ja ahterpiigi vahel. See on kasulik osalise lastimise puhul ­ lihtne on saada sobiv trimm ­ ja ka

Laevandus
101 allalaadimist
thumbnail
34
docx

Laevade ehitus eksam

1. Laeva arhitektuursed tüübid. Vööri ja ahtri kuju, tekiehitiste ja masinaruumi paiknemine. · Arhitektuuri tüübid on: ahtri ja vööri kuju, tekimajakate asukoht, kerede arv (katamaraan, trimaraan) · Vööri kuju Plumb bow ­ PÜSTVÖÖR Raked bow ­ KALDAVÖÖR (annab laevale voolujoonelisuse, vähendab vee sattumist tekile, soodustab lainele tõusmist) Modified raked bow ­ LÕIGATUD VÖÖR ((jääoludes pooljäämurdevöör) ­ vee peal peaaegu vertikaalne, vee all 45°-50° kaldu, hea sõiduks purustatud jääs. Selline vöör sobib hästi

Laevade ehitus
158 allalaadimist
thumbnail
25
docx

laevade ehituse kordamisküsimused

1. Perpendikulaarid? Ahtri perpendikulaar- rooltäävi ja suvise veeliini ristumiskoht, rooltäävi puudumisel rooli palleri ja suvise veeliini ristumiskoht Vööri perpendikulaar- suisel lastiliinil vööri ja veeliini ristumiskoht 2. Milliseid laeva pikkuseid on olemas? Perpendikulaaride vaheline kaugus (LPP)- perpendikulaaride vaheline kaugus mõõdetuna suvisel veeliinil Amidship- ½ perpendikulaaride vaheline kaugus Lenght overall- laeva maximaalne pikkus (arvesse võttes kõiki väljaulatuvaid osi) Loyd’s lenght - sama, mis Lpp kuid ei tohi olla vähem kui 96% ja rohkem kui 97% maksimaalsest suve laadliini pikkusest. Kui laeval on ebaharilik vööri või ahtri

Laevade ehitus
12 allalaadimist
thumbnail
14
doc

LAEVA UJUVUS

Joon. 3. Ujuva laeva mõjujõud Staatilises olukorras, s.t. häirimata veepinnal liikumatult püsivale laevale mõjuvad laeva raskusjõud ja ujuvusjõud. Laeva raskusjõud või kaal W = mg, kus m ­ laeva mass tonnides; g ­ raskuskiirendus m/s2. Tehnikas kasutatakse siiani laevade kaalu puhul raskusjõu ühikuna masstonni, mis on võrdne 9,81 kN. Laeva raskusjõud on rakendatud laeva raskuskeskmesse G ja suunatud alla mööda püstsirget, mis on veeliini tasandi normaal. Väljatõrjutud vedeliku kaal määrab ujuvuse e. ujuvusjõu, mis on vedeliku mahu ja tiheduse korrutis. Vedeliku tihedus on ühtlase vedeliku mass ruumala ühiku kohta. Tiheduse ühikuks rahvusvahelises mõõtühikute süsteemis (SI) on kg/m3, kuid merenduses kasutatakse kordset ühikut Mg/m3 = t/m3 . Tähiseks on . Ujuvusjõud mõjub püstsihis üles ja on 9 2. Laeva ujuvus

Laevandus
69 allalaadimist
thumbnail
39
doc

Laevade ehitus EKSAM

1. Esimene küsimus puudutab laevade liigitust, klassifitseerimist, laeva teooria aluste temaatikat loengutes läbi võetud materjali ulatuses 2. Teine on laeva osade konstruktsiooni, seadme või süsteemi kohta käiv küsimus 1. Laeva arhitektuursed tüübid. Vööri ja ahtri kuju, tekiehitiste ja masinaruumi paiknemine. Lagedatekiline laev - lahtine, lage tekk vöörist ahtrini. Võib olla üks (enamasti) tekihoone (tekikamber), mis ei ulatu pardast pardani. Näit. sadamapuksiirid. Pideva tekiehitisega laev - pardast pardani ulatuv tekiehitis vöörist ahtrini. Esineb enamasti reisilaevadel, matkelaevadel, parvlaevadel, autoveolaevadel jne. Kolmesaarelaev - kolm tekiehitist: pakk, keskmine ja pupp. Pakk kaitseb tekki eestpoolt peale jooksvate

Laevandus
106 allalaadimist
thumbnail
103
doc

Meresõiduohutus ja laeva juhtimine

mereleminekut. Lastiplaan (lastipaigutus) peab tagama üldise ja kohaliku tugevuse, püstuvuse ja muud mereomadused nii merele mineku hetkel kui ka varude kulumisel reisi jooksul. Mitme reisipunkti korral, milles toimuvad lastioperatsioonid, tuleb last paigutada nii, et ta jääks kinnitatuks (et teda saaks kinnitada) nii ülesõitude ajaks kui ka mittetormikindlas sadamas töid katkestades merele tormi möödumist ootama minnes. Enne sadamast merele väljumist: teostatakse laevakere ja vaheseinte ülevaatus seest ja väljast (veel enne lastimist); enne lasti laadimist kontrollitakse pilsside ja nende kuivendustorustike (eriti kaitse- võrgud) seisukorda ja puhtust; vaadatakse üle mõõtetorud; ballasti- ja kütusetankid kas täidetakse või tühjendatakse lõplikult, et neis ei oleks vabu pindasid; suletakse ja kontrollitakse üle kõik manluugid tankides ja tsisternides, suletakse pidevalt kinni olevad läbikäigud;

Ohutus ja ohuteave
46 allalaadimist
thumbnail
8
docx

Laeva teooria

välisjõu mõju lakkab. Vaatleme põikipüstuvust ehk püstuvust külgkalde korral kallet mõõdetakse kreeninurgaga (ring mille sees on täpp) Eristame algpüstuvust ( väikeste kalletega) ja püstuvust suurtel kalletel. Uppumatus Uppumatus on laeva võime säilitada ujuvust ja püsivust ja saada ujuvasse asendisse kui osa ruume on veega täidetud. laeva ruumidesse sattunud vesi on laevale täiendavaks lastiks Veega täitunud laeva kere osa ei võta osa üleslükkejõu teitamisest , mistõttu üleslükkejõud vaheneb puudujääv üleslükkejõud kompenseeritakse laeva kere täiendava vettevajumisega. Laev saab ujuvasse olekusse seni kuni laeva keresse sattunud vee ruumala ei ületa ujumise tagavara. Mida suurem on ujuvuse tagavara , seda suurem on laeva uppumatuse aste. laeva ruumidesse sattuva vee hulga vahendamiseks jagatakse laeva kere veekindlate põik- pikavaheseintega väiksema ruumalaga osadeks.

Laevade ehitus
106 allalaadimist
thumbnail
29
doc

Laeva elektriseadmed lisaküsimused

Võimalikud lisaküsimused eksamil 1. Mis on pardakõrgus ? 2. Mis on keskmine süvis? 3. Mis on vabaparras? 4. Kes määrab vabaparda kõrguse? 5. Kus asub tekijoon? 6. Mitu süviseskaalat on laeval? 7. Missugune on lastimärgijoonte paksus? 8. Missuguse laeva konstruktsioonielemendi läbib ahtriperpendikulaar? 9. Missugustest osadest koosneb laeva teoreetiline joonis? 10. Missugune teoreetilise joonise vaade näitab mudelkaarte kuju? 11. Missugune teoreetilise joonise vaade näitab veeliinide kuju? 12

Laeva elektriseadmed
84 allalaadimist
thumbnail
21
doc

Laeva Püstuvus

(GM ) = ja (GM L ) = , kus iy ­ vedeliku vabapinna keskinertsimoment mahuti y telje suhtes [m4] . 3.2.3. Algpüstuvus lastimisel või lossimisel Juhul, kui laeva dokumentatsioonis puuduvad püstuvuse kontrolli ning vööri ja ahtri süviste diagrammid, kuid on olemas teoreetilise joonise elementide kõverad või hüdrostaatika elementide tabel (GHS ­ General Hydrostatic Data), siis on võimalik määrata laeva trimm ja püstuvus alljärgnevate lahendustega. Laeva alg trimm ja -püstuvus määratakse valemitega: ( XG - XB ) t = TF -TA = 100 MTC GM = KM - KG

Laevandus
219 allalaadimist
thumbnail
52
docx

Madruse eksami piletid 2016

• Purjelaeva tuled, päevamärk ja udusignaalid. Lisaks teistele käigutuledele punane ja roheline ringtuli mastis. Päevamärk on kolmnurk tippuga alla. Udusignaal 1 pikk, 2 lühikest iga 2 min. tagant. • Ankru vabastamine veealusest kaablist või teise laeva ankruketist. Ankur tõstetakse nii kõrgele kui võimalik. Võetakse vajaliku tugevusega tross. Trossi üks ots kinnitatakse pollarile, trossi teine ots lastakse läbi klüüsi parda taha ankru juurde. Vööris kinnitatakse ankru kohale tormiredel, seal madrus toob allalastud trossi vaba otsa võõra ankruketi alt läbi ja seob selle allalastud viskeliini külge. Selle abil tõstetakse trossi vaba ots üle vööri kiibi tekile, pingutatakse ja kinnitatakse pollarile. Tasapisi laseme ankrupeliga om ankru allapoole. Heal juhul vabanevad meie ankru käpad võõrast ankruketist esimesel katsel. Võõras ankrukett jääb trossi otsa rippuma

Madruse koolitus
124 allalaadimist
thumbnail
71
docx

Merekultuur ja etikett

sõjalaevaks muuta (või vastupidi). Karaki põhiliseks puuduseks oli kehv merekindlus – kõrge parras ja pealisehitised kippusid samuti "tuult alla võtma", nii et laev liikus hoopis teises suunas kui kapten soovis. Kuna karavelli manööverdusvõime oli tükk maad parem, tuligi ühel tundmatuks jäänud laevameistril mõte mõlema tüübi head omadused ühendada. Selleks asendati karaki vööris asunud kastell pikalt etteulatuva "nokaga", millele toetusid pukspriit ja kliiverpoom. Ka laevakere muudeti pikemaks ja voolujoonelisemaks – kui karaki kiilu pikkuse ja kere laiuse suhe oli 1 : 3, siis galeoonidel saavutas vastav näitaja juba 1 : 4. Kere ise muutus veeliini kohal laiemaks ja parraste kohalt kitsamaks, saavutades ristlõikes pirni kuju – see suurendas püstuvust ja raskendas merelahingus vastaste pardale tungimist. Kõik tekiehitised olid tunduvalt madalamad ega ulatunud enam laevakere kontuurist välja.

Merendus
35 allalaadimist
thumbnail
210
docx

Elektroonilised laevajuhtimisseadmed konspekt

Radarid Raadiolokatsioonialused 1.1Raadiolokatsiooni põhimõte Raadiolokatsiooniks nimetatakse objektide avastamist ja avastatud objektide koordinaatide määramist meetodi abil, mis põhineb raadiolainete tagasipeegeldamisel ja peegeldunud raadiolainete vastuvõtul. Sellel põhimõttel töötavat seadet nimetatakse raadiolokaatoriks. Igapäevases keelepruugiks nimetatakse raadio- lokaatorit ka radariks. Termin tuleneb inglise keelest sõnast Radar – radiodetection and ranging 1.2 Radari töö põhimõte Navigatsiooniline raadiolokaator töötab järgmiselt. Saatja genereerib ja kiirgab ülikõrgsageduslikke raadiolaineid, mis sondeerivad ümbritsevat keskkonda. Kui raadiolaine teele satub keha, mille dielektriline läbitavus erineb keskkonna omast, siis teatud osa kehale langevast energiast peegeldub kajana tagasi, millest osa võtab vastu raadiolokaatori antenn ja kuvarile ilmub objekti kaja helendava punkti näol . Sellega on täidetud üks raadioloka

Laevandus
29 allalaadimist
thumbnail
73
doc

Konteinerveod

- netoruumala 15 oC juures. Maatankide mõõtmistulemuste alusel koostatakse tunnistus, kus on näidatud: - vedeliku ruumala liitrites ja temperatuur - vedeliku ruumala liitrites15 oC juures - vedeliku ruumala barrelites 60 oF juures - mass tonnides - mass pikkades tonnides (long tons). Laeva tankide tühikute protokoll (ullage report) Protokollis näidatakse ära: - mõõtmise kuupäev ja kellaaeg - ilmastikutingimused - tanki number - tühik, mm - trimmi ja tühiku parandus - süvis ahtris ja vööris 10 - merevee temperatuur. 7.6. Vedellastide koguse määramine Oletame, et silindrikujuline nõu on täidetud tasemeni h 1 vedelikuga, mille temperatuur on 20 °C. Kui vedeliku temperatuur tõsta 40 °C-ni, tõuseb vedeliku pind tasemeni h 2. Ehkki vedelikutase on tõusnud, pole vedelikku lisandunud, sest vedeliku mass ja molekulide arv pole muutunud. Seega vedeliku mahu määramisel tuleb tingimata arvestada vedeliku temperatuuri

Laevandus
54 allalaadimist
thumbnail
15
doc

Diisel

1. 4- ja 2-taktilise diiselmootori ringprotsessid, Kuna sisselaskeklapp (klapid) avaneb enne ÜSS-u , toimub Ülelaadimiseta (sundlaadimiseta ) mootorite täiteaste avaldub arvutuslik ja tegelik indikaatordiagramm. põlemiskambri läbipuhe ( nn. klappide ülekate ). valemiga SPM ringprotsesside arvestus. v = / ( - 1)* Pa / P0 * T0/Ta * 1/ (r+1) Erinevalt teoreetilistest ringprotsessidest saadakse tegelikus 2-TAKTILISE MOOTORI TEGELIK Kui mootor on ülelaadimisega (sundlaadimisega ),siis parameetrite sisepõlemismootoris soojust kütuse põletamisel kolvipealses INDIKAATORDIAGRAMM P0 ja T0 asemele pannakse ülelaadimise õhu pa

Abimehanismid
81 allalaadimist
thumbnail
58
doc

Masinamehaanika täielik loengukonspekt

Loengukonspekt õppeaines MASINAMEHAANIKA Koostanud prof. T.Pappel Mehhatroonikainstituut Tallinn 2006 2 SISUKORD SISSEJUHATUS 1. ptk. MEHHANISMIDE STRUKTUURITEOORIA 1.1. Kinemaatilised paarid, lülid, ahelad 1.1.1. Kinemaatilised paarid 1.1.2. Vabadusastmed ja seondid 1.1.3. Lülid, kinemaatilised ahelad 1.2. Kinemaatilise ahela vabadusaste. Liigseondid. Liigliikuvused 1.2.1. Vabadusaste 1.2.2. Liigseondid. Liigliikuvused. 1.3. Mehhanismide struktuuri sünteesimine 1.3.1. Struktuurigrupid 1.3.2. Kõrgpaaride arvestamine 1.3.3. Kinemaatiline skeem. Struktuuriskeem 2. ptk. MEHHANISMIDE KINEMAATILINE ANALÜÜS 2.1. Eesmärk. Algmõisted 2.2. Mehhanismide kinemaatika analüütilised meetodid

Masinatehnika
509 allalaadimist
thumbnail
65
doc

AM kordamiskusimused lopueksamiks ( vastused)

võrgu survekao ( ht = hs +hi ) ületamiseks. Arvuliselt on staatiline surve pumba imemiskõrguse ja pumbatava vedeliku veesamba kõrguse summa Hst = hi + hs . Staatiline tõstekõrgus näitab kui kõrgele tegelikult tõuseb veesammas survetorus pumbatava vee nivoost. Pumba staatilise surve väärtus oleneb pumba asukohast veevõtukoha veenivoo suhtes st. kas pump asub pumbatava vee nivoost kõrgemal või madalamal. Näiteks laeva masinaruumis asuvad merevee pumbad allpool veeliini. 6 Pumbates merevett läbi kingstoni veeliinist kõrgemale paaki võrdub pumba staatiline tõstekõrgus Hst = hs - hi Pumbates vett põhjatangist üle parda Hst = hs + hi , kus hs - on pumba poolt tekitatud veesamba kõrgus hi ­ on pumba imemiskõrgus Pumbast läbiminekul saab vedelik pumbalt energiat juurde ja selle energia arvel võib vesi tõusta survetorus teatud kõrguseni (hs). Seega konkreetse pumba

Abimehanismid
121 allalaadimist
thumbnail
53
doc

LAEVA ABIMEHHANISMID

Teoreetiline tootlikkus on see vedeliku hulk ,mida pump peaks andma arvutuste järgi vastavalt oma mõõtmetele ja töökiirusele. Tegelik tootlikkus on teoreetilisest alati väiksem pumba sisemiste ja väliste lekete (kadude ) võrra. Välised lekked võivad tekkida: - Läbi pumba tihendite, - Läbi ebatihedate toruühenduste. Välised lekked olenevad pumba tehnilisest korrasolekust ja on tavaliselt väikesed või peaksid puuduma üldse. Sisemised lekked esinevad pumba tööorgani ja kere vahel ( ka klappide vahel). Nende lekete suurus sõltub pumba tüübist ja tööparameetritest. Sisemise lekete suurust iseloomustab pumba mahuline kasutegur ( 0 või v). 0 = Gteg/ Gteor = Qteg/ Qteor. Pumba imemiskõrgus ja kavitatsioon. (vaata loengus antud joonist) Pumba imemine on vedeliku surumine pumpa atmosfäri rõhu mõjul , kui pump tekitab pumba imitorus ja pumba sees hõrenduse.. Seega imemine on seotud atmosfäri rõhoga (760 mmHg ). Kui puudub atmosfäär ,siis

Abimehanismid
65 allalaadimist
thumbnail
127
pdf

Metallkonstruktsioonid

TERASKONSTRUKTSIOONID I Loengukonspekt TTÜ Ehitiste projekteerimise instituut Prof. Kalju Loorits Teras 1 2 SISSEJUHATUS Euroopa Liidus ja Eestis kehtiv projekteerimisstandardite süsteem EN 1990 Eurokoodeks: Kandekonstruktsioonide projekteerimise alused EN 1991 Eurokoodeks 1: Konstruktsioonide koormused EN 1992 Eurokoodeks 2: Raudbetoonkonstruktsioonide projekteerimine EN 1993 Eurokoodeks 3: Teraskonstruktsioonide projekteerimine EN 1994 Eurokoodeks 4: Terasest ja betoonist komposiitkonstruktsioonide projekteerimine EN 1995 Eurokoodeks 5 Puitkonstruktsioonide projekteerimine EN 1996 Eurokoodeks 6 Kivikonstruktsioonide projekteerimine EN 1997 Eurokoodeks 7 Geotehniline projekteerimine EN 1998 Eurokoodeks 8 Ehitiste projekteerimine maavärinat taluvaks EN 1999 Eurokoo

Teraskonstruktsioonid
390 allalaadimist
thumbnail
65
pdf

Mõõtmestamine ja tolereerimine

MÕÕTMESTAMINE JA TOLEREERIMINE 2 ×16 tundi Teema Kestvus h 1. Sissejuhatus. Seosed teiste aladega 2 Mõisted ja terminiloogia. GPS standardite maatriksmudel 2. Geometrilised omadused. Mõõtmestamise 2 üldprintsiibid. Ümbrikunõue, maksimaalse materjali tingimus 3. ISO istude süsteem. Tolerantsiväljad 2 4. Istud. Võlli ja avasüsteem 2 5. Soovitatavad istud. Istude rahvuslikud süsteemid 2 6. Istude kujundamise põhimõtted 2 Istude analüüs ja süntees 7. Liistliidete tolerantsid. 2 Üldtolerantsid 8. Geomeetrilised hälbed. Kujuhälbed. 2 Suunahälbed 9. Viskumise hälbed. Asetsemise hälbed. Lähted 2 Nurkade ja koonuste hälbed ja tolerantsid 10. Pinnahälb

Mõõtmestamineja...
235 allalaadimist
thumbnail
77
doc

TEHNOÖKOLOOGIA EKSAM

Kõrge heli rõhk on põhjustatud seadme komponentidest või gaasi kiirest liikumisest (näiteks ventilaatorid), või operatsioonidest, mis sisaldavad mehhaanilist mõju (näiteks pressimine, neetimine). Transpordimüra (maantee, raudtee ja õhuliiklus) on peamine keskkonna müra allikas. Üldiselt, suurem ja raskem transpordivahend tekitab rohkem müra kui väiksem ja kergem. Erandiks on helikopterid ja 2 ja 3-rattalised autod. Autode müra on põhjustatud mootorist, ning hõõrdumisest auto kere, tee ja õhu vahel. Kiirusel 60 km/h ja rohkem on rataste ja tee vaheline müra suurem kui mootori oma. Selle faktori füüsikaline sisu on veel avamata. 3. ÕHUKVALITEEDI PARANDAMISEST SADAMATES Õhukvaliteeti Tallinnas mõjutab lokaalne linnas ja lähialadel toimuv õhu saastamine ning kaugleviga siia kanduv mujal tekkiv reostus. Olulisimaks õhukvaliteeti mõjutavaks reostusallikaks on Tallinnas autodest lähtuv reostus.

Tehnoökoloogia
42 allalaadimist
thumbnail
151
pdf

PM Loengud

V.Jaaniso Pinnasemehaanika 1. SISSEJUHATUS Kõik ehitised on ühel või teisel viisil seotud pinnasega. Need kas toetuvad pinnasele vundamendi kaudu, toetavad pinnast (tugiseinad), on rajatud pinnasesse (süvendid, tunnelid) või ehitatud pinnasest (tammid, paisud) (joonis 1.1). a) b) c) d) J o o n is 1 .1 P in n a s e g a s e o tu d e h i tis e d v õ i n e n d e o s a d .a ) p i n n a s e le t o e t u v a d ( m a d a l - j a v a iv u n d a m e n t) b ) p i n n a s t t o e t a v a d ( t u g is e in a d ) c ) p in n a s e s s e r a j a tu d ( tu n n e li d , s ü v e n d i d d ) p in n a s e s t r a j a tu d ( ta m m i d , p a is u d ) Ehitiste koormuste ja muude mõjurite tõttu pinnase pingeseisund muutub, pinnas deformeerub ja võib puruneda nagu kõik teisedki materjalid. See põhjustab

Pinnasemehaanika, geotehnika
200 allalaadimist
thumbnail
1072
pdf

Logistika õpik

Eesti Rahvusraamatukogu digitaalarhiiv DIGAR Eesti Rahvusraamatukogu digitaalarhiiv DIGAR Ain Tulvi LOGISTIKA Õpik kutsekoolidele Tallinn 2013 Eesti Rahvusraamatukogu digitaalarhiiv DIGAR Käesolev õppematerjal on valminud „Riikliku struktuurivahendite kasutamise strateegia 2007- 2013” ja sellest tuleneva rakenduskava „Inimressursi arendamine” alusel prioriteetse suuna „Elukestev õpe” meetme „Kutseõppe sisuline kaasajastamine ning kvaliteedi kindlustamine” programmi „Kutsehariduse sisuline arendamine 2008-2013” raames.

Logistika alused
638 allalaadimist
thumbnail
132
pdf

Elektrirajatiste projekteerimine III

Peeter Raesaar ÕHULIINIDE PROJEKTEERIMISE KÜSIMUSI ELEKTRIRAJATISTE PROJEKTEERIMINE III osa 1. Sissejuhatus. Normatiivdokumendid. Üldpõhimõtted. 2. Õhuliinidele mõjuvad koormused 3. Juhtmete ja piksekaitsetrosside arvutus 4. Mastide arvutusest 5. Vundamentide arvutusest 6. Isolaatorid 7. Õhuliinide tarvikud 8. Trassi valik, mastide paigutus trassil 2006 ÕHULIINIDE KONSTRUKTIIVOSA PROJEKTEERIMINE 1. SISSEJUHATUS 1.1 NORMDOKUMENDID. Lähtuda tuleb reast normdokumentidest. Olulisemad: • EVS-EN 50341-1:2001: Elektriõhuliinid vahelduvpingega üle 45 kV /Overhead electrical lines exceeding AC 45 kV/ – Eesti versioon etteval- mistatud ja kuulub peatselt kinnitamisele Eesti Standardikeskuse käskkir- jaga. Hõlmab õhuliinide ja tema komponentide (juhtmed ja piksekaitsetrossid, mastid, vundamendid, ühenduse

Elektrivõrgud
48 allalaadimist
thumbnail
138
docx

GEODEESIA II eksami vastused

Geodeesia eksamiteemad kevad 2013 1. Geodeesia mõiste ja tegevusvaldkond, seosed teiste erialadega Geodeesia on teadus Maa ning selle pinna osade kuju ja suuruse määramisest, seejuures kasutatavatest mõõtmismeetoditest, mõõtmistulemuste matemaatilisest töötlemisest ning maapinnaosade mõõtkavalisest kujutamisest digiaalselt või paberkandjal kaartide, plaanide ja profiilidena. Geodeesia on teadusharu, mis vaatluste ja mõõtmiste tulemusena määrab terve maakera kuju ja suuruse, objektide täpsed asukohad, aga ka raskusjõu väärtused ja selle muutused ajas. Samuti ka objektide koordineerimine ja nende omavaheliste seoste kujutamine, seda just topograafiliste kaartide abiga. Objektide asukohtade väljakandmine loodusesse. TEGEVUSVALDKONNAD: Kõrgem geodeesia ­ Maa tervikuna, kuju ja suurus; insenerigeodeesia ­ geodeetilised tööd rajatiste projekteerimiseks, alusplaanid, ka maa-alused kommunikatsioonid, kaevandused, erinevad trassid; topograafia

Geodeesia
271 allalaadimist
thumbnail
5
doc

Eksami abimees

Eesti oludes, kus pinnasevesi on sageli maapinna lähedal, on see probleem suurem peenteristel ja tolmliivadel. Kapillaarjõud on põhjuseks, miks niiske liiv ja hulgast, ka vedeliku viskoossusest. Filtratsioonimooduli suurus sõltub palju ka väga oluline. halvasti tiheneb võrreldes kuivaga. Kapillaarjõududest tingitud teradevahelised pinnaseosakeste mõõtmetest, pinnase poorsus ja vee temp. V ei ole võrdne Sissejuhatus - Geotehnika - ehitustehnika haru, mis tegeleb pinnasega sidemed kaovad niipea kui pinnas küllastub veega (sademed, pinnasevee tegeliku vee liikumise kiirusega pinnases. Kuna tegelik voolamine toimub läbi seotud ehitiste või nende üksikosade projekteerimise ja ehitamisega, see taseme tõus). Pinnaseosakesed võivad olla liidetud looduslike tsementidega, pooride, siis tegelik voolukiirus on: vp=v(1+e)/e. Pinnase vee

Pinnasemehaanika, geotehnika
425 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun