Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Keskkooli lõpueksam (2008) - sarnased materjalid

lahend, tuletis, trapets, koonus, graafik, diagonaal, koonuse, kuupfunktsioon, puutuja, avaldis, lõikepunkt, diagonaalid, kasvamis, kerad, kolmnurk, puutepunkt, kerade, telg, vahemikud, variandi, ekstreemum, püramiid, kahanemisvahemik, haar, avaldise, urni, vektor, urnis, kommentaarid, lahendame, arccos, variandis, rombi, näpunäited
thumbnail
246
pdf

Funktsiooni graafik I õpik

a1 = a a0 = 1 a n  a n  am an © Allar Veelmaa 2014 5 10. klass Viljandi Täiskasvanute Gümnaasium LINEAAR- JA RUUTVÕRRANDI LAHENDAMINE 1) Lineaarvõrrandi ax + b = 0 lahendamine b Kui a ≠ 0, siis lahend on x   a Kui a = 0, siis on kaks võimalust: a) kui b = 0, siis võrrandi 0 · x = 0 lahendiks sobib iga arv. b) kui b ≠ 0, siis võrrandil 0 · x = b lahendeid ei ole. 2) Ruutvõrrandi ax2 + bx + c = 0 lahendamine: Kui a = 1, siis sellist võrrandit nimetatakse taandatud ruutvõrrandiks ja esitatakse kujul x2 + px + q = 0 ning see lahendatakse valemiga p p2

Matemaatika
79 allalaadimist
thumbnail
7
doc

Riigieksami lahendused II

x1 = = 3; x2 = =- . 6 6 3 1 X =- ;- ( 3; ) 3 Kahanemisvahemik: X : y < 0 3x 2 - 8x - 3 < 0 1 X = - ; 3 3 2) Leiame ekstreemumkohad: y´ = 0 1 3 x 2 - 8 x - 3 = 0 x1 = 3; x2 = - . 3 Määrame ekstreemumkoha liigi teise tuletise järgi. Teine tuletis oli f ( x ) = 6 x - 8 . 1 1 1 f - = 6 - - 8 = -2 - 8 = -10 < 0, siis x = - on maksimumkoht 3 3 3 f ( 3) = 6 3 - 8 = 18 - 8 = 10 > 0, siis x = 3 on miinimumkoht 1 1 ;- ( 3; Vastus: X =- ); X =- ; 3 ; miinimumkoht on 3 ja maksimumkoht on -1/3.

Matemaatika
369 allalaadimist
thumbnail
54
doc

Valemid ja mõisted

1 lim 1 + = e = 2, 7182... , x x sin x lim = 1 sin x : x , kui x 0 . x0 x Funktsiooni nimetatakse pidevaks kohal a, kui lim f ( x ) = f ( a ) . x a Funktsiooni nimetatakse pidevaks mingis piirkonnas, kui ta on pidev selle piirkonna igas punktis. 32 4.5 Funktsiooni tuletis Funktsiooni y = f ( x ) tuletiseks kohal x nimetatakse funktsiooni muudu y ja argumendi muudu x suhte piirväärtust argumendi muudu lähenemisel nullile. dy Funktsiooni tuletise tähised on y , f ( x ) , , yx . Seega dx y y = lim .

Matemaatika
1099 allalaadimist
thumbnail
108
doc

MATEMAATIKA TÄIENDÕPE: Valemid

MATEMAATIKA TÄIENDÕPE VALEMID JA MÕISTED KOOSTANUD LEA PALLAS 1 2 SAATEKS Käesolev trükis sisaldab koolimatemaatika valemeid, lauseid, reegleid ja muid seoseid, mille tundmine on vajalik kõrgema matemaatika ülesannete lahendamisel. Kogumikus on ka mõned kõrgema matemaatika õppimisel vajalikud mõisted, mida koolimatemaatika kursuses ei käsitletud.. 3 KREEKA TÄHESTIK Α α  alfa Ν ν  nüü Β β  beeta Ξ ξ  ksii Γ γ  gamma Ο ο  omikron Δ δ  delta Π π  pii Ε ε  epsilon Ρ ρ  roo Ζ ζ  dzeeta Σ σ  sigma Η η  eeta Τ τ  tau Θ θ  teeta Υ υ  üpsilon Ι ι  ioota Φ φ  fii Κ κ  kap

Algebra I
61 allalaadimist
thumbnail
12
doc

Funktsioonide lahendamine

2) Lahendage võrrand f(x) = 1 3) Lahendage võrratus f(x) > 0 lõigus 0, . 4) Leidke funktsiooni f(x) miinimumkoht vahemikus (0; 2) ja arvutage funktsiooni väärtus sellel kohal. 1 8. Antud on funktsioon f ( x ) x 2 x 2 . 1) Leidke funktsooni f(x) määramispiirkond. 2) Leidke funktsiooni f(x) kasvamis- ja kahanemisvahemik. 3) Skitseerige funktsiooni f(x) graafik. 4) Lahendage võrrand f( log2 t) = 3, kui t > 1. 9. (1999) Antud on funktsioon y = x3 ­ 5x2 + 3x ­ 11. 1) Leidke selle funktsiooni kasvamis- ja kahanemisvahemikud. 2) Leidke sellel funktsiooni suurim väärtus lõigul [0 ; 5]. 10. (1999) Antud on funktsioonid f(x) = ln x ja g(x) = - 2. 1) Skitseerige ühes ja samas teljestikus nende funktsioonide graafikud. 2) Leidke a) millistes punktides on nende väärtused võrdsed;

Matemaatika
62 allalaadimist
thumbnail
7
doc

Matemaatika riigieksam

Kui = 60 , siis see suhe 0 1 + sin 1 + sin 2 2 on 2/3. 6. (15p) On antud korrapärane nelinurkne püramiid, mille külgserva ja põhja vahelise nurga tangens on 3 ning põhja diagonaal on 8 cm. Püramiidi sisse on kujundatud korrapärane nelinurkne prisma nii, et selle alumine põhi asub püramiidi põhjal ja ülemise põhja servad külgtahkudel. 1) Avaldage prisma ruumala tema põhja diagonaali d kaudu. 2) Millise d väärtuse korral on prisma ruumala maksimaalne? Arvutage prisma maksimaalne ruumala. Lahendus: Olgu d prisma põhja diagonaal;

Matemaatika
550 allalaadimist
thumbnail
7
doc

Matemaatika valemid kl 10-11 12 tõenäosus

a b 23. Nurga mõiste üldistamine. Nurkade liigitus = a d -b c 24. Nurga kraadi- ja radiaanimõõt (Radiaan on c d kesknurk, mis toetub raadiuse pikkusele NB! Kahe muutujaga linaarvõrrandi kaarele) süsteemil: 180° = rad a) On üks lahend 180° a b rad = kui D 0 , siis 1 1 a 2 b2 b) On lõpmatult palju lahendeid 1° = rad 180° 25. Ringjoone kaare pikkus ja sektori pindala 1 - cos

Matemaatika
1299 allalaadimist
thumbnail
273
pdf

Lembit Pallase materjalid

11. Funktsiooni pidevuse m~oiste. Tarvilik ja piisav tingimus funktsiooni pidevuseks 12. Elementaarfunktsioonide pidevus 13. L~oigul pidevate funktsioonide omadused 14. Funktsiooni katkevuspunktid 15. Funktsiooni tuletise m~oiste, selle geomeetriline ja mehhaaniline t~olgendus 1 16. Pidevus ja diferentseeruvus 17. M~onede p~ohiliste elementaarfunktsioonide tuletised 18. Diferentseerimisreeglid 19. P¨o¨ordfunktsiooni tuletis 20. Liitfunktsiooni tuletis 21. Logaritmiline diferentseerimine 22. Ilmutamata funktsiooni tuletis 23. Parameetrilisel kujul esitatud funktsiooni tuletis 24. Funktsiooni diferentsiaal 25. K~orgemat j¨arku tuletised 26. Joone puutuja ja normaali v~orrandid 27. Rolle'i teoreem 28. Cauchy teoreem 29. Lagrange'i teoreem 30. L'Hospitali reegel 31. L'Hospitali reegel teistel m¨aa¨ramatuse juhtudel 32. Taylori valem 33

Matemaatiline analüüs
808 allalaadimist
thumbnail
22
docx

Matemaatika eksami kordamine KEVAD 2015

 ; 1   2;   2.Funktsiooni uurimine tuletise abil a) Leidke funktsiooni y = x3 - 4x2 -3x -2 kasvamis- ja kahenemisvahemikud, maksimum- ja miinimumkoht. Vastus: Kasvab x<-1/3, x>3 ; kahaneb -1/3 < x <3 max .koht - 1/3 ; min. koht 3. b) Antud on funktsiooni y = x3 -5x2 +3x - 11 1) Leidke selle funktsiooni kasvamis- ja kahanemisvahemikud 2) Leidke selle funktsiooni vähim väärtus lõigul [ 0 ; 5 ] 3) Skitseeri funktsiooni graafik lõigul [ 0 ; 5 ] . Vastus:1) kasvab, x< 1/3 või x>3 ; kahaneb, kui 1/3< x <3 2) y =-20 c) On antud funktsioon f ( x) = xln6 - xlnx 1) leidke funktsiooni f ( x) a) määramispiirkond b) graafiku ja x - telje lõikepunkt c) maksimumpunkti abstsiss 2) Koostage joone y = f ( x) puutuja võrrand punktis, kus joon lõikab x - telge. Vastus:1) a) ( 0 ;  ) b) ( 6 ; 0 ) c ) 6/e 2) y = -x +6

Matemaatika
179 allalaadimist
thumbnail
10
docx

11. klass kordamine EKSAMIKS vastustega

2) kas f ( x ) = x3 - 4x on paaritu funktsioon. 1 3) funktsiooni nullkohad, positiivsus ja negatiivsuspiirkonnad. 2 Vastus: 1) -15, 15 a3 -4a , x3 +3ax2 + (3a2 -4)x , 2) f(-x) = -f(x) 3) X+ = (-2; 0) U ( 2; ) X- = ( - ; -2 ) U ( 0 ; 2 ) b) Joonisel on esitatud funktsiooni graafik. Leidke funktsiooni graafikult 1) nullkohad 2) positiivsus- ja negatiivsuspiirkond 3) kasvamis- ja kahanemisvahemikud 4) maksimum- ja miinimumpunkti koordinaadid Vastus: 1) x1= -1,6 x2 = 3,1

Matemaatika
105 allalaadimist
thumbnail
32
doc

Matemaatika I küsimused ja mõisted vastustega

ühepoolsed piirväärtused f ( a+) = lim f(x); x a+ ja f( a- ) = lim f(x); x a - nimetatakse 1. liiki katkevuspunktiks. ( hüppekoht, kõrvaldatav katkevuskoht, ................................................... 3 17. Teist liiki katkevuspunkt - arvu a nimetatakse funktsiooni y = f(x) teist liiki katkevuspunktiks, kui lim f(x); x a - on lõpmatu või ei eksisteeri ............................................ 4 20. Diferentseeruv funktsioon - kui funktsioonil y = f(x) on tuletis punktis x = x0, siis ütleme, et funktsioon on diferentseeruv punktis x0. Kui funktsioon on aga diferentseeruv mingi piirkonna igas punktis, öeldakse, et funktsioon on diferentseeruv selles piirkonnas. ..................................... 4 1. Arvuhulgad: naturaal-, täis-, ratsionaal-, reaal- ja kompleksarvud. Nende omadused. ...............6 2. Reaalarvu absoluutväärtus, absoluutväärtuse omadused. ............................................................6 Absoluutväärtuse omadused..

Matemaatika
118 allalaadimist
thumbnail
8
doc

12. klass matemaatika kordamine

tipud asuvad esimese kolmnurga külgedel jaotades need suhtes 1:2. Leia väiksema kolmnurga pindala. 7. Koonusekujulise veiniklaasi kõrgus on h. Mitu protsenti klaasi ruumalast on täidetud, kui klaasi fvalatakse veini poole kõrguseni? 8. Milliste muutuja x Väärtuste korral saavutab funktsioon f ( x ) = 2 8 x - 9 4 x + 12 2 x + 1997 oma suurima ja vähima väärtuse lõigus [-1;1] ? Leia need funktsiooni väärtused. 9. Koonuse põhja pindala ja telglõike pindala on võrdsed. Avalda koonuse ruumala, kui moodustaja on m. 10. Kauba hinda alandati 10% võrra. Mitme protsendi võrra tuleb uut hinda veel alandada, et kogu hinnaalandus oleks 28%? 11. Ringi raadiusega 1 on joonestatud maksimaalse suurusega võrdkülgne kolmnurk, sellesse siseringjoon, saadud ringi võrdkülgne kolmnurk jne. Leia tekkivate kolmnurkade pindalade summa. 12. Humalavars kasvab 6 cm ööpäevas

Matemaatika
328 allalaadimist
thumbnail
142
pdf

Matemaatilise analüüsi konspekt TTÜ's

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.8 L~opmatult kahanevate ja l~opmatult kasvavate suuruste v~ordlemine. 43 2.9 Funktsiooni pidevus. Katkevuspunktide liigitus. . . . . . . . . . . 45 ¨ 2.10 Uhepoolne pidevus. Pidevus hulkadel. Elementaarfunktsioonide pidevus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.11 L~oigul pidevate funktsioonide omadusi. . . . . . . . . . . . . . . . 52 3 Tuletis ja diferentsiaal 57 3.1 Tuletise, diferentseeruva funktsiooni ja diferentsiaali m~oisted. . . 57 3.2 N¨aiteid tuletiste kohta rakendustes. . . . . . . . . . . . . . . . . . 60 3.3 Tuletiste arvutamise p~ohireeglid . . . . . . . . . . . . . . . . . . . 61 3.4 Ilmutamata funktsiooni, p¨o¨ordfunktsiooni ja parameetrilise funk- tsiooni diferentseerimine. . . . . . . . . . . . . . . . . . . . . . . . 62

Matemaatiline analüüs
47 allalaadimist
thumbnail
142
pdf

Matemaatiline analüüs I

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.8 L~opmatult kahanevate ja l~opmatult kasvavate suuruste v~ordlemine. 43 2.9 Funktsiooni pidevus. Katkevuspunktide liigitus. . . . . . . . . . . 45 ¨ 2.10 Uhepoolne pidevus. Pidevus hulkadel. Elementaarfunktsioonide pidevus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.11 L~oigul pidevate funktsioonide omadusi. . . . . . . . . . . . . . . . 52 3 Tuletis ja diferentsiaal 57 3.1 Tuletise, diferentseeruva funktsiooni ja diferentsiaali m~oisted. . . 57 3.2 N¨aiteid tuletiste kohta rakendustes. . . . . . . . . . . . . . . . . . 60 3.3 Tuletiste arvutamise p~ohireeglid . . . . . . . . . . . . . . . . . . . 61 3.4 Ilmutamata funktsiooni, p¨o¨ordfunktsiooni ja parameetrilise funk- tsiooni diferentseerimine. . . . . . . . . . . . . . . . . . . . . . . . 62

Matemaatika
42 allalaadimist
thumbnail
156
pdf

Kõrgem matemaatika

. . . . . . . . . . . . . . . . 40 4.5 Tähtsad piirväärtused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.6 Pidevad funktsioonid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.7 Funktsiooni katkevusviise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.8 Pidevate funktsioonide omadused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5 Funktsiooni tuletis ja diferentsiaal 47 5.1 Keskmine kiirus ja hetkkiirus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.2 Tuletise definitsioon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.3 Põhiliste elementaarfunktsioonide tuletised . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.4 Diferentseerimise reeglid . . . . . . . . . . . . . . .

Kõrgem matemaatika
94 allalaadimist
thumbnail
11
doc

Määratud integraal

mx P Mx võrdus esineb vaid siis, kui y = f ( x ) = const P Seega m M x Kui x 0 , lähenevad nii m kui ka M funktsiooni väärtusele kohal x lim m = lim M = f ( x ) x0 x 0 P Järelikult on ka lim = f ( x) ning tuletise definitsiooni meenutades P( x ) = f ( x ) (1) x 0 x Leidsime, et pindfunktsiooni tuletis võrdub pindala piirava kõvera lõppordinaadiga. 1 KÕVERJOONSE TRAPETSI PINDALA Kõverjoonse trapetsi abBA pindala S abBA = P ( b ) ehk pindala võrdub pindfunktsiooni väärtusega kohal x =b. Valem (1) näitab,et pindfunktsioon on üks funktsiooni y = f ( x ) algfunktsioonidest. Olgu y = F ( x ) mingi algfunktsioon funktsioonile y = f ( x )

Kõrgem matemaatika
181 allalaadimist
thumbnail
64
pdf

Kolokvium 1 materjal

TTU¨ Matemaatikainstituut http://www.staff.ttu.ee/math/ Ivar Tammeraid http://www.staff.ttu.ee/itammeraid/ ¨ US MATEMAATILINE ANALU ¨ I Elektrooniline ~oppevahend Tallinn, 2001 Tr¨ ukitud versioon: Ivar Tammeraid, Matemaatiline anal¨ uu ¨ Kirjastus, ¨s I, TTU Tallinn 2001, 227 lk, ISBN 9985-59-289-1 ¨ Raamatukogu Viitenumber http://www.lib.ttu.ee TTU ~opikute osakonnas 517/T-15 c Ivar Tammeraid, 2001 Sisukord 0.1. Eess~ ona K¨aesoleva ~ oppevahendi aluseks on autori poolt viimastel aastatel Tallinna Tehnika¨ ulikoo- lis bakalaureuse~ oppe u ¨li~ opilastele peetud u ¨he muutuja funktsiooni diferentsiaal- ja inte- graalarvutuse loengud nimetuse "Matemaatiline anal¨ uu¨s I" all. Siiski ei ole tegu pelgalt u ¨hel semestril esitatu kirjapanekuga. Lisatud on

Matemaatiline analüüs
65 allalaadimist
thumbnail
11
pdf

Määratud integraal

mx S Mx võrdus esineb vaid siis, kui y = f ( x ) = const S Seega m M x Kui x 0 , lähenevad nii m kui ka M funktsiooni väärtusele kohal x lim m = lim M = f ( x ) x0 x 0 S Järelikult on ka lim = f ( x) ning tuletise definitsiooni meenutades S ' ( x ) = f ( x ) (1) x 0 x Leidsime, et pindfunktsiooni tuletis võrdub pindala piirava kõvera lõppordinaadiga. 1 KÕVERJOONSE TRAPETSI PINDALA Kõverjoonse trapetsi abBA pindala S abBA = S ( b ) ehk pindala võrdub pindfunktsiooni väärtusega kohal x =b. Valem (1) näitab,et pindfunktsioon on üks funktsiooni y = f ( x ) algfunktsioonidest. Olgu y = F ( x ) mingi algfunktsioon funktsioonile y = f ( x )

Matemaatika
66 allalaadimist
thumbnail
19
doc

Matemaatika valemid.

2 P( x ) · Murdvõrrand ­ = 0 P( x ) = 0 ja Q( x ) 0 Q( x ) A1x + B1 y = C1 · Lineaarvõrrandisüsteem ­ A 2 x + B2 y = C2 A 1 B1 ­ üks lahend A 2 B2 A 1 B1 C1 = ­ lahend puudub A 2 B2 C 2 A 1 B1 C1 = = ­ lõpmata palju lahendeid A 2 B2 C 2 3. Vektor tasandil. Joone võrrand · Lineaartehted vektoritega

Matemaatika
807 allalaadimist
thumbnail
9
doc

Matemaatiline analüüs - konspekt I

Näiteks kui f(x)=ex, siis f-1(y)=lny ja iga x korral ln(ex)=x. Pöördfunktsiooni f-1 leidub ainult niisugusel funktsioonil f, mis on kogu oma määramispiirkonnas kas kasvav või kahanev, sest üksnes selline f korraldab üksühese vastavuse oma määramispiirkonna ja muutumispiirkonna vahel. Kui funktsioon f rahuldab nimetatud tingimust vaid oma määramispiirkonna mingil osahulgal, siis saab rääkida üksnes selle funktsiooni vastava lahendi pöördfunktsioonist. Kui funktsiooni f tuletis f' on kohal x nullist erinev, siis pöördfunktsiooni f-1 tuletis kohal y=f(x) saab avaldada kujul ( f -1 )' ( y ) = f '1( x ) = f ' ( f 1-1 ( y ) ) 4. Funkts. Piirväärtus. Ühepoolsed piirväärtused. Funktsiooni piirv. Def: Funktsioonil f on piirväärtus b kohal a kui suvalises piirprotsessis xa, mis rahuldab tingimust x a, funktsiooni väärtus f(x) läheneb arvule b. Funktsiooni piirväärtuse kirjutusviis on: lim(xa) f(x) = b või f(x) b kui xa

Matemaatiline analüüs
598 allalaadimist
thumbnail
35
pdf

Mitmemuutuja funktsioonid

muutujale muudu xi ja jättes ülejäänud muutujad konstantseks. u = f ( x1 ,..., xi -1 , xi + xi , xi +1 ,..., x n ) - f ( x1 ,..., xi -1 , xi , xi +1 ,..., x n ) Def. 3.1. Funktsiooni z = f ( x, y ) osatuletist x järgi nimetatakse funktsiooni tuletist tingimusel, et y = const . z z f ( x + x , y ) - f ( x, y ) (3.1) = z x = lim x = lim x x 0 x x 0 x Selle funktsiooni osatuletiseks y järgi on tuletis z yz f ( x, y + y ) - f ( x, y ) (3.2) = z y = lim = lim y y 0 y y 0 y n-muutuja funktsiooni u = f ( x1 , x 2 ,..., x n ) osatuletiseks x k suhtes on tuletis tingimusel, et kõik muutujad on konstantsed, välja arvatud x k . z z = lim k (3.3) x k x k 0 x k k = 1,2,..., n z

Matemaatiline analüüs 2
240 allalaadimist
thumbnail
33
doc

Matemaatika riigieksam

1) 2) 3) 4) 3 4 5 2 3 1- log 3 6 - log 4 0 ,125 3. Arvuta avaldise 27 -4 väärtus. 1) 0 2) 7,875 3) ­ 7,875 4) ­ 3,875 4. On antud perioodilise funktsiooni y = f ( x ) graafik, on teada, et funktsiooni periood T = 4, leia f (10) . 1) 0 2) 1 3) 2 4) 3 5. Leia kõigi täisarvude summa, mis jäävad lõigule [-5;7] ja kuuluvad funktsiooni y = 2 - log 2 ( 2 + 4 x - x 2 ) määramispiirkonda. 1) 7 2) 4 3) 5 4) 13 6. Leia funktsiooni suurima ja vähima väärtuse korrutis. 1) -2,25 2) 2,25 3) -2,125 4) 2,125 y = f ( x)

Matemaatika
526 allalaadimist
thumbnail
12
pdf

2009. aasta matemaatika riigieksami ülesanded ja lahendused

mustandipaberile kirjutatut. Nõutavad teadmised ja oskused Matemaatika riigieksam ei ole 12. klassi lõpueksam, vaid kogu koolimatemaatika põhiteadmiste ja ­oskuste omandatust kontrolliv eksam. Eksamiülesannete koostamisel eeldatakse, et eksaminand on (minimaalselt) läbinud järgmised ainekursused: 1. Reaalarvud. Võrrandid ja võrratused. 2. Trigonomeetria. 3. Vektor tasandil. Joone võrrand. 4. Funktsioonid I, II. 5. Funktsiooni piirväärtus ja tuletis. 6. Tõenäosusteooria ja kirjeldav statistika. 7. Stereomeetria. Riigieksamiülesannete koostamisel lähtutakse riiklikus õppekavas esitatud nõuetest (vt ,,Põhikooli ja gümnaasiumi riiklik õppekava"; http://www.riigiteataja.ee/ert/act.jsp?id=174787 ). Eksamiülesannete lahenduste näiteid (2008/2009 õ-a riigieksami põhjal) a a 1 -2 2 1

Matemaatika
1273 allalaadimist
thumbnail
55
pdf

Matemaatiline analüüs II loengukonspekt

MATEMAATLINE ANALÜÜS II 1. KORDSED INTEGRAALID Kordame kõigepealt mõningaid teemasid Matemaatlise analüüsi I osast. 1.1 Kahe muutuja funktsioonid Kui Tasndi R 2 mingi piirkonna D igale punktile x, y D seatakse ühesel viisil vastavusse arv z, siis öeldakse, et piirkonnas D on määratud kahe muutuja funktsioon z f x, y . Piirkoda D nimetataksefunktsiooni f määramispiirkonnaks. See on mingi piirkond xy-tasandil. Näide 1. Poolsfääri z 1 x2 y 2 määramispiirkonnaks on ring x 2 y2 1. Funktsiooni z ln x y määramispiirkonnaks on pooltasand y x (sirgest y x ülespoole jääv tasandi osa: vaata joonist). Kahe muutja funktsioon ise esitab pinda xyz-ruumis (ruumis R 3 ). Näide 2. Funktsiooni z x2 y 2 graafikuks on pöördparaboloid (vaata allpool olevat joonist) Kahe muutuja funktsiooni f nivoojoonteks nimetatakse jooni f x, y c Näide 3. Tüüpiline näide nivoojoo

Matemaatiline analüüs II
69 allalaadimist
thumbnail
51
pdf

Enno Paisu konspekt

Teoreem 3 Olgu funktsioon y =f(x) pidev lõigul [a, b] Siis mistahes väärtuse jaoks, mis asub funktsiooni vähim ja suurima väärtuse vahel m k M leidub vähemalt üks selline punkt x3 [a, b] , et f(x3)=k Järeldus: Kui funktsioon on pidev lõigul [a, b] ja f(x1)>0 ja f(x2)<0, x1 , x 2 [a, b] . Siis leidub niisugune x3 ]x1 , x 2 [ , et f ( x 3 ) = 0 © 2001 - Ivari Horm ([email protected]), Toomas Sarv 9 Funktsiooni tuletis ja selle geomeetriline tähendus. Puutuja ja normaali võrrand. Olgu antud funktsioon y = f (x) Anname argumendile x muudu x Siis funktsioon saab vastava muudu y = f ( x + x ) - f (x) Definitsioon 1 Funktsiooni y = f ( x) tuletiseks nimetatakse piirväärtust y f ( x + x) - f ( x) y ' = lim = lim x 0 x x 0 x y

Matemaatiline analüüs
179 allalaadimist
thumbnail
51
pdf

Matemaatilise analüüsi konspekt

Teoreem 3 Olgu funktsioon y =f(x) pidev lõigul [a, b] Siis mistahes väärtuse jaoks, mis asub funktsiooni vähim ja suurima väärtuse vahel m k M leidub vähemalt üks selline punkt x3 [a, b] , et f(x3)=k Järeldus: Kui funktsioon on pidev lõigul [a, b] ja f(x1)>0 ja f(x2)<0, x1 , x 2 [a, b] . Siis leidub niisugune x3 ]x1 , x 2 [ , et f ( x 3 ) = 0 © 2001 - Ivari Horm ([email protected]), Toomas Sarv 9 Funktsiooni tuletis ja selle geomeetriline tähendus. Puutuja ja normaali võrrand. Olgu antud funktsioon y = f (x) Anname argumendile x muudu x Siis funktsioon saab vastava muudu y = f ( x + x ) - f (x) Definitsioon 1 Funktsiooni y = f ( x) tuletiseks nimetatakse piirväärtust y f ( x + x) - f ( x) y ' = lim = lim x 0 x x 0 x y

Matemaatiline analüüs
11 allalaadimist
thumbnail
8
doc

Kordamisküsimused aines "Matemaatiline analüüs I"

arvutamise lihtsustamiseks ning reeglina kasutatakse seda ainult selliste piirväärtuste korral, mis sisaldavad mingisugust jagatist. L'Hospitali reegel seisneb selles, et me võtame sellest avaldisest tuletise ( iseseivalt nii ülevalt kui alt, MITTE JAGATISE TULETIST). Kui seejärel määramatus ära ei kao,siis võtame veel kord tuletist. Tuletis, selle rakendused Tuletis, selle geomeetriline tähendus- Funktsiooni tuletis on funktsiooni ja argumendi muudu suhte piirväärtus argumendi muudu tõkestamatul lähenemisel nullile. Teisiti öeldes on tuletis funktsiooni muutumise kiirus ning geomeetriliselt näitab funktsiooni tuletis funktsiooni tõusu punktis, mille abtsiss on x. Tuletise arvutamine definitsiooni järgi- TULETISTE TABEL Liitfunktsiooni tuletis- Liitfunktsiooniks nimetatakse funktsiooni, mille analüütilises avaldises

Matemaatika analüüs I
159 allalaadimist
thumbnail
11
doc

Matemaatiline analüüs - konspekt II

32. Lokaalse ekstreemumi piisavad tingimused: tingimus I. Olgu x1 funktsiooni f kriitiline punkt. Kui läbides punkti x1 vasakult paremale funktsiooni tuletise märk muutub plussist miinuseks siis on funktsioonil selles punktis lokaalne maksimum. Kui aga läbides punkti x1 vasakult paremale funktsiooni tuletise märk muutub miinusest plussiks siis on funktsioonil selles punktis lokaalne miinimum. Kui funktsioonil eksisteerib teist järku tuletis siis saab lokaalsete ekstreemumite olemasolu kontrollida ka selle abil. Nimelt maksimumpunkti läbides vasakult paremale funktsiooni graafiku puutuja tõus väheneb. See tähendab et funktsiooni tuletis kahaneb. Funktsiooni tuletis kahaneb aga juhul kui teine tuletis on negatiivne. Seevastu miinimupunkti läbides puutuja tõus suureneb, seega tuletis kasvab. Tuletis kasvab aga juhul kui teine tuletis on positiivne. Järelikult kehtib järgmine väide: Lokaalse ekstreemumi piisav tingimus II

Matemaatiline analüüs
350 allalaadimist
thumbnail
40
doc

Keskkooli matemaatika raudvara

...........................................................................36 Kahe sirge lõikepunkti koordinaadid......................................................................................37 Kahe sirge vaheline nurk........................................................................................................ 38 Ringjoonevõrrand................................................................................................................... 38 Ruutfunktsiooni graafik, selle joonestamine.......................................................................... 39 Pöördvõrdelise sõltuvuse graafik............................................................................................39 4 I Reaalarvud ja avaldised Arvuhulgad Naturaalarvude hulk N N = {0; 1; 2; 3; 4; ...}

Matemaatika
1453 allalaadimist
thumbnail
37
docx

Matemaatiline analüüs l.

neil vastavad funktsiooni väärtused tabeli teises reas (veerus). On võimalik vaid siis, kui funktsiooni argumendil on lõplik arv väärtusi. 2. Anaüüutiline esitusviis. Funktsioon esitatakse valemi kujul. Kui vaja, lisatakse ka määramispiirkonna kirjeldus. 3.Graafiline esitusviis. Funktsioon esitatakse graafikuna tasandil ristkoordinaadistikus. Funktsiooni f graafiku definitsioon on järgmine: G = {P = (x, f(x)) || x X} . Kui f(x) > 0, siis graafik paikneb ülalpool x-telge. Kui aga f(x) < 0, siis graafik jääb x-teljest allapoole. Kui suvaline y-teljega paralleelne sirge saab funktsiooni graafikut lõigata maksimaalselt ühes punktis, siis funktsioon on ühene. Juhul, kui eksisteerib vähemalt üks y-teljega paralleleelne sirge lõikab funktsiooni graafikut mitmes punktis, vaadeldav funktsioon on mitmene. 3. Paaris- ja paaritud funktsioonid. Perioodilised funktsioonid. Kasvavad ja kahanevad funktsioonid. Astmefunktsioon

Matemaatiline analüüs
484 allalaadimist
thumbnail
27
ppt

Funktsioonid ja nende graafikud

määramispiirkond? 3. Jalgsimatk kestis 9 tundi. Esimesed 5 tundi liiguti kiirusega 4,5 km/h, siis puhati pool tundi ja ülejäänud aja liiguti kiirusega 4 km/h. Avaldada läbitud teepikkus (s) aja t funktsioonina. Leidke selle funktsiooni määramispiirkond. Paaris- ja paaritud funktsioonid Funktsiooni y = f(x) nimetatakse paarisfunktsiooniks, kui f(-x) = f(x), ja paarituks funktsiooniks, kui f(-x) = -f(x) iga x korral määramispiirkonnast X. Paarisfunktsiooni graafik on sümmeetriline y-telje suhtes, paaritufunktsiooni graafik aga 0-punkti suhtes. y Paaritu funktsioon 0 x Paarisfunktsioon Perioodilised funktsioonid Funktsiooni f(x) nimetatakse perioodiliseks, kui leidub selline nullist erinev reaalarv , nii et f(x + ) = f(x) iga x X korral. Vähimat positiivset väärtust, mille korral see

Matemaatika
136 allalaadimist
thumbnail
10
doc

Matemaatiline analüüs I konspekt - funktsioon

· Jagatise piirväärtus võrdub piirväärtuse jagatisega eeldusel, et nimetaja lim y=a, lim z=b piirväärtus ei võrdu nulliga: lim(y/z)=a/b, b0 · Kui yuz ja lim y=lim z=a, siis ka lim u=a · Funktsioonil y=f(x) ei saa olla rohkem kui üks piirväärtus. L'Hospitali valem, selle kasutamise eeldused. See reegel on rakendatav ainult 0/0 ja / korral. Tuletis , selle rakendused. Tuletis, selle geomeetriline tähendus Funktsiooni tuletis on funktsiooni ja argumendi muudu suhte piirväärtus argumendi muudu tõkestamtul lähenemisel nullile. Funktsiooni tuletise geomeetriline tähendus on et funktsiooni graafiku puutuja tõus punktis mille abstsiss on x. Tuletise arvutamine definitsiooni järgi. · Funktsiooni tuletise leidmist nim ka diferentseerimiseks. Tuletise leidmiseks on vaja: · fikseerida argumendi mingi väärtus x ja arvutada sellele vastav funktsiooni väärtus

Matemaatiline analüüs
259 allalaadimist
thumbnail
63
doc

Põhikooli matemaatika kordamine

Ruutfunktsioon Sissejuhatav kordamine 1. Teosta tehted. Vastustes vabane negatiivsetest astendajatest. 3 1 2 3 1 a) 2 a b c 3 Lahendus: ; 1 4 2 s 3 t b) 4 5 3 4 s t Lahendus: . 2. Lihtsusta avaldis. a) xy(x + 3y) + (x + y)(x2 ­ 2xy ­ y2) Lahendus: xy(x + 3y) + (x + y)(x2 ­ 2xy ­ y2) = = x2y + 3xy2 + x3 ­ 2x2y ­ xy2 + x2y ­ 2xy2 ­ y3 = = x 3 ­ y3 = = (x ­ y)(x2 + xy + y2) b) (3a ­ 2)2 + (2 + 3a)(2 ­ 3a) Lahendus: (3a ­ 2)2 + (2 + 3a)(2 ­ 3a) = 9a2 ­ 12a + 4 + 4 ­ 9a2 = = 8 ­ 12a 3. Lahenda võrrand. a) 24x2 + 5x ­ 1 ­ (24x2 ­ 6x ­ 12x + 3) = 111 Lahendus: 24x2 + 5x ­ 1 ­ (24x2 ­ 6x ­ 12x + 3) = 111;

Matemaatika
91 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun