Teises alaülesandes on tegemist liitsündmusega. Kõigepealt tuleb selgeks teha, kas on tegemist sündmuste korrutisega või sündmuste summaga, teiste sõnadega, kas on vaja rakendada tõenäosuste korrutamise või liitmise lauset. Tõenäosuste korrutamise lause puhul on oluline teada, kas korrutatavad sündmused on sõltumatud või mitte. Tõenäosuste liitmise lause korral peab teadma, kas liidetavad sündmused on üksteist välistavad või mitte. Lahendused I 1) Olgu urnist rohelise kuuli võtmine sündmus A. m P( A) , kus n on kõigi võimaluste arv ja m soodsate võimaluste arv. n Karbis on 16 kuuli, järelikult ühe kuuli võtmiseks on 16 võimalust, seega n = 16. Karbis on 6 rohelist kuuli, seega soodsaid juhuseid rohelise kuuli saamiseks on 6, seega m = 6. 6 3 Järelikult P ( A) = . 16 8
KESKKOOLI MATEMAATIKA RAUDVARA 1. osa Andres Haavasalu dikteeritud konspekti järgi koostanud Viljar Veidenberg. 2003. aasta 1 Sisukord Sisukord........................................................................................................................................2 Arvuhulgad............................................................................................................................... 5 Naturaalarvude hulk N..........................................................................................................5
MATEMAATIKA TÄIENDÕPE VALEMID JA MÕISTED KOOSTANUD LEA PALLAS 1 2 SAATEKS Käesolev trükis sisaldab koolimatemaatika valemeid, lauseid, reegleid ja muid seoseid, mille tundmine on vajalik kõrgema matemaatika ülesannete lahendamisel. Kogumikus on ka mõned kõrgema matemaatika õppimisel vajalikud mõisted, mida koolimatemaatika kursuses ei käsitletud.. 3 KREEKA TÄHESTIK - alfa - nüü - beeta - ksii - gamma - omikron - delta - pii - epsilon - roo - dzeeta - sigma - eeta - tau - teeta - üpsilon
Tiia Toobal 2008 II osa Pärnu Koidula Gümnaasium Test nr. 1. a 0,5 - 16b 0, 5 1. Leia avaldise - 4b 0, 25 , kui a = 16. a 0, 25 - 4b 0, 25 1) 6 2) -2 3) 4 4) 2 2. Leia antud arvudest suurim ( 2) ( 2) 3, 2 3 1 4, 7 1) 2) 3) 4) 3 4 5 2 3 1- log 3 6 - log 4 0 ,125 3. Arvuta avaldise 27 -4 väärtus. 1) 0 2) 7,875 3) 7,875 4) 3,875 4. On antud perioodilise funktsiooni y
MATEMAATIKA TÄIENDÕPE VALEMID JA MÕISTED KOOSTANUD LEA PALLAS 1 2 SAATEKS Käesolev trükis sisaldab koolimatemaatika valemeid, lauseid, reegleid ja muid seoseid, mille tundmine on vajalik kõrgema matemaatika ülesannete lahendamisel. Kogumikus on ka mõned kõrgema matemaatika õppimisel vajalikud mõisted, mida koolimatemaatika kursuses ei käsitletud.. 3 KREEKA TÄHESTIK Α α alfa Ν ν nüü Β β beeta Ξ ξ ksii Γ γ gamma Ο ο omikron Δ δ delta Π π pii Ε ε epsilon Ρ ρ roo Ζ ζ dzeeta Σ σ sigma
23.05.1998 a matemaatika riigieksam Lehe haldamist toetavad Topauto ja meelespea.net Põhivariant 1. rida 1998 aasta matemaatika riigieksami ülesannete lahendused 8 - x 12 x +2 1. (5p) Lihtsustage avaldist ning näidake, et selle väärtus ei sõltu x väärtusest. 6 2- x 18 x 21-x Lahendus: Valemid, mida lihtsustamisel kasutati: 1 a n ; ( ab ) = a n bn ; ( a n ) = a n m n m a - n = n ; a m+ n = a m a
2 2 23 3 3 cm . 2 BC h 3 3 2 Leiame nüüd kolmnurgast OBC Pythagorase teoreemi abil kera raadiuse R OC 4 2 32 19 cm . Vastus. Kera raadius on 19 cm. 3 3) Riigieksam 1999 (20p.) Püströöptahuka diagonaalid on 9 cm ja 33 cm. Tema põhja ümbermõõt on 18 cm ja külgserv on 4 cm. Leidke püströöptahuka ruumala. Leidke kolmnurkse püramiidi ABDD1 ruumala. Lahendus. D1 C1 Ülesande andmete põhjal B1 BD1 = 33 cm ja AC1 = 9 cm; A1 2(a + b) = 18 cm;
9 ÜLESANDED 1) Arvuta võrdhaarse trapetsi pindala, kui pikem alus on 44 cm ja haar 17 cm ning diagonaal 39 cm. V: 540 cm² 2) Rõnga pindala on S. Väiksema ringi raadius moodustab kümnendiku suurema S ringi ümbermõõdust. Leia suurema ringi raadius. V: R 5 25 3 3) Riigieksam 1998. Sektorisse, mille raadius on R ja kesknurk , on kujundatud ring. Avalda ringi raadius ning ringi ja sektori pindalade suhe. Arvuta see suhe, 2 sin 2 kui =60 . V : o 2 2 2 3 1 sin 2
Kõik kommentaarid