VEKTORARVUTUS 1. Murdmaasuusataja sõidab 1.00 km põhja poole ja siis 2.00 km itta. Maa on horisontaalne. Kui kaugel ja mis suunas asub ta lähtepunktist? 2. Vektori pikkus on 3.00 m ja ta on suunatud x-teljest 45° päripäeva. Kui suured on selle vektori x- ja y-komponendid? 3. Kolm võistlejat on lagedal väljal. Igaühele antakse mõõdulint, kompass, kalkulaator ja labidas ning järgmised andmed: Kui minna 32.0° põhjast itta arvestatud suunas 72.4 m, siis 36.0° läänest lõunasse arvestatud suunas 57.3 m ja lõpuks otse lõunasse 17.8 m, siis leiate paiga, kuhu on maetud Porsche võtmed. Kaks võistlejat asuvad kohe mõõtma, kolmas aga arvutama. Mida ta arvutab ja mis tulemuse ta saab? 4. Lennuk lendab 10.4 km läände, 8.7 km põhja ja 2.1 km üles. Kui kaugel on ta lähtepunktist? D = 6i + 3 j - k 5. Antud on kaks vektorit: . Leida vektori F = 2 D - E pikkus.
LIIKUMISHULK 1. Kui suur on 10 tonni kaaluva veoki liikumishulk, kui ta kiirus on 12.0 m/s? Kui kiiresti peaks sõitma 2-tonnine sportauto, et ta liikumishulk oleks sama? p 10t p m v v1 12.0m/s p m v 1000kg 12.0m/s 120'000kg m/s p2 2t . p 120'000kg m/s v2 ? v 60 m m 2'000kg s 2. Pesapall massiga 0.145 kg veereb y-telje positiivses suunas kiirusega 1.30 m/s ja tennispall massiga 0.0570 kg y-telje negatiivses suunas kiirusega 7.80 m/s. Milline on süsteemi summaarse liikumishulga suurus ja suund? v2 7,80m/s p1 m1 v1 0,1885kg m/s m2 0.0570kg
KOOLIFÜÜSIKA: MEHAANIKA3 (kaugõppele) 3. IMPULSS, TÖÖ, ENERGIA 3.1 Impulss Impulss, impulsi jäävus Impulss on vektor, mis on võrdne keha massi ja tema kiiruse korrutisega r r p = mv . Mehaanikas nimetatakse impulssi vahel ka liikumishulgaks. See on vananenud mõiste ja selle kasutamine ei ole otstarbekas. Nii näiteks on ka elektromagnetväljal impulss, mille üheks avaldusvormiks on valgus rõhk. Elektromagnetvälja korral aga on liikumishulga mõiste kohatu. Impulsi mõiste on kasulik seetõttu, et teatud juhtudel, näiteks kehade põrgetel, kehtib impulsi jäävuse seadus. Viimase üldine sõnastus on järgmine. Impulsi jäävuse seadus: suletud (isoleeritud) süsteemi koguimpulss on jääv suurus, st mistahes ajahetkel on süsteemi kuuluvate kehade impulsside summa konstantne r r r p1 + p 2 + L + p n = const. Kehade liikumisel ja omavahelistel vastastikmõjudel kehade impulsid muutuvad, muutuda võib ka kehade arv süsteemis. Nii näiteks võivad k
KOOLIFÜÜSIKA: MEHAANIKA3 (kaugõppele) 3. IMPULSS, TÖÖ, ENERGIA 3.1 Impulss Impulss, impulsi jäävus Impulss on vektor, mis on võrdne keha massi ja tema kiiruse korrutisega r r p = mv . Mehaanikas nimetatakse impulssi vahel ka liikumishulgaks. See on vananenud mõiste ja selle kasutamine ei ole otstarbekas. Nii näiteks on ka elektromagnetväljal impulss, mille üheks avaldusvormiks on valgus rõhk. Elektromagnetvälja korral aga on liikumishulga mõiste kohatu. Impulsi mõiste on kasulik seetõttu, et teatud juhtudel, näiteks kehade põrgetel, kehtib impulsi jäävuse seadus. Viimase üldine sõnastus on järgmine. Impulsi jäävuse seadus: suletud (isoleeritud) süsteemi koguimpulss on jääv suurus, st mistahes ajahetkel on süsteemi kuuluvate kehade impulsside summa konstantne r r r p1 + p 2 + L + p n = const. Kehade liikumisel ja omavahelistel vastastikmõjudel kehade impulsid muutuvad, muutuda võib ka kehade arv süsteemis. Nii näiteks võivad k
1. Vektorarvutused. 1. Murdmaasuusataja sõidab 1.00 km põhja poole ja siis 2.00 km itta. Maa on horisontaalne. Kui kaugel ja mis suunas asub ta lähtepunktist? Lahendus: Skeem.... Phytagorase teoreemi järgi saame kauguse - Ja nurga tangensi definitsiooni järgi leiame nurga Vastus: Suusataja kaugus alguspunktist on 2,24 km ja ta asub 63,4⁰ põhjast itta (võib ka öelda 90: - 63,4: = 26,6⁰ idast põhja) 2. Vektori pikkus on 3.00 m ja ta on suunatud x-teljest 45˚ päripäeva. Kui suured on selle vektori x- ja y-komponendid? Lahendus: Joonis Komponentide leidmiseks kasutame Valemeid ja kus D on vektori pikkus ja α vektori ja tema komponendi vaheline nurk.
trajektoor on sirge ja keha nihked mistahes võrdsetes ajavahemikes on võrdsed. Ûhtlast sirgjoonelist liikumist on kõige lihtsam kirjeldada. Keha nihe ja selleks kulunud aeg. t: 0 s 1s 2s 3s s= 5m 5m 5m Harva tuleb ette, et keha liigub pidevalt sirgjooneliselt. Mittesirgjoonelist liikumist võib ette kujutada väikest lõikudena, millised on sirged. Füüsika toimitakse tihti niiviisi, et kujutatakse ette mõni ideaalsete omadustega nähtus või keha, mille kohta käivad seadused on võimalikult lihtsad. Seejuures ei arvestata paljusi pisiasju, mis antud olukorras tulemusi oluliselt ei mõjuta. Näiteks pole ju tarvis arvestada maapinna kumerust sõidul Tartust Elva. Taolist idealiseeritud keha või nähtust nimetatakse füüsikaliseks mudeliks. Kiirus on peamine liikumist iseloomustav suurus. Ûhtlase sirgjoonelise liikumise
ARVESTUSED Õppeaines: FÜÜSIKA Õpilane: Klass: 10 Õpetaja: 2005 2 SISUKORD I ARVESTUS MEHAANIKA .................................................................................................5 1. SI süsteemi põhimõõtühikud ....................................................................................................5 2. Ühikute teisendamine ja eesliite väljendamine kümne astmetena .......................................................................................................................................................6 3. Kulgliikumine............................................................................................................................6 4. Taustsüsteem..............................................................................................................................7 5. Nihe..........................................................................................................................
J. Kirs Loenguid ja harjutusi dünaamikast 19 4. Näiteülesanded. Näide 4.1 Masspunkt massiga 2 kg liigub sirgjooneliselt jõu F mõjul, mille algväärtus on 8 N ja mis kasvab igas sekundis 2 N võrra. Leida punkti liikumise seadus kui v0 = 0 . Lahendus Suuname x-telje piki punkti liikumissirget. Kuna siin on tegemist ühedimen- N sionaalse juhtumiga, siis kasutame diferentsiaalvõrrandi üldkuju (4.7), kus Fkx k =1 on kõigi mõjuvate jõudude projektsioonide summa x-teljele, s.t N m x = Fkx (4.15) k =1 Millised jõ
Kõik kommentaarid