Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

ALGEBRA JA GEOMEETRIA - sarnased materjalid

maat, maatrik, maatriks, permu, tame, mise, permutatsioon, maatriksite, elemen, veer, korru, duse, ahis, teoreem, miinor, reaalarv, ment, reaalarvu, miinori, veeru, determinant, moodus, veerg, algebra, tatud, permutatsioonid, reaalarvud, siks, argi, maatriksiks, veergu, maatriksid, reaalarvude, kujutus, liitmise, korrutamine, dades, rahuldab, matemaa
thumbnail
48
pdf

Maatriksid

I. Maatriksid ja determinandid 1. Maatriksi m~oiste. Tehted ja nende omadused . . . . . . . . . . . . . . . . . . . . . . 4 2. Permutatsioonid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3. Determinandi m~oiste. Omadused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4. Laplace'i teoreem. Determinandi arendamine rea ja veeru j¨argi . . . 34 5. Teoreem maatriksite korrutise determinandist . . . . . . . . . . . . . . . . . . . . 40 6. P¨o¨ordmaatriks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 II. Vektorruum u ¨le reaalarvude 7. Vektorruumi m~oiste. Omadused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 8. Vektorruumi alamruum

Algebra ja geomeetria
55 allalaadimist
thumbnail
104
pdf

Konspekt

Ar- vupaari k × n := (k, n) nimetatakse maatriksi A j¨ arguks. Selguse huvides v~oib maatriksi j¨arku n¨aidata ka t¨ahistuses, nt (aij )k × n . Kui k = n, siis ¨oeldakse, et A on ruutmaatriks. Ruutmaatriksi j¨arguks nimetame lihtsalt selle maatriksi ridade (ehk veergude) ar- vu. Elementide j¨arjendit a11 , a22 , . . . nimetatakse (ruut)maatriksi A peadiagonaaliks. K~oigi k × n-j¨arku reaalarvuliste elementidega maatriksite hul- ka t¨ahistame edaspidi Matk × n := Matk × n (R). 1.2 Aritmeetilised vektorid ¨ Uherealisi ja u ¨heveerulisi maatrikseid nimetatakse ka (aritmeeti- listeks) vektoriteks. Aritmeetiliste vektorite elemente nimetatakse tavaliselt vektori koordinaatideks ehk komponentideks. Aritmeetiliste vektorite hulgadeks on seega Mat1 × n ja Matk × 1 . Maatriksi ridadest moodustatud u ¨herealisi maatrikseid nime- tatakse maatriksi reavektoriteks

Lineaaralgebra
511 allalaadimist
thumbnail
28
pdf

Lineaaralgebra ja analüütiline geomeetria konspekt

milles on eristatavad read ja veerud. Maatriksit, milles on m rida ja n veergu, nimetatakse täpsemalt (m, n)-maatriksiks. Maatriksi mõõtmed Arvupaari (m, n) nimetatakse selle maatriksi mõõtmeteks. Maatriksi järk Ruutmaatriksit mõõtmetega (n, n) nimetatakse ka n-järku maatriksiks. Kui on ruutmaatiks, siis näitab mitu rida ja veergu maatriksil on. Näiteks kolmandat järku ruutmaatriksil on 3 rida ja 3 veergu. Maatriksi elemendid Reaalarve, milledest maatriks koosneb, nimetatakse maatriksi elementideks. Maatriksite elemente tähistatakse vastavate väikeste ladina tähtedega, mis võivad olla varustatud ka indeksitega: a, b, c.. Maatriksi ja maatriksite hulga tähistused Maatrikseid tähistatakse tavaliselt suurte ladina tähtedega A, B, . . . , X, Y, Z. Kõigi (kõikvõimalike mõõtmetega) maatriksite hulka tähistame Mat abil ning kõigi (m, n)-maatriksite hulka tähistame Mat(m, n) abil. Maatriksite liigid:

Algebra ja analüütiline...
105 allalaadimist
thumbnail
14
odt

DV II KT vastused

DV II teooriatöö kordamisküsimused 1. Kõrgemat järku harilik DV. Lahendi olemasolu, ühesuse tingimused, üldlahend, erilahend. V: Kõrgemat järku harilikud diferentsiaalvõrrandid: Üldkuju: F(x, y, y', y'', ..., y(n)) = 0, kus x on sõltumatu muutuja, y = y(x) on otsitav funktsioon ja y', ..., y (n) on otsitava funktsiooni tuletised. Normaalkuju: y(n) = f(x, y, y', ..., y(n-1)) (1) Eksaktne lahend: x0, y0, y01, ..., y0n-1, Algtingimused: nii mitu konstanti kui suur on DV järku konstant. {y(x0) = y0 {y'(x0) = y0(1) {... (2) (n-1) (n-1)

Dif.võrrandid
73 allalaadimist
thumbnail
8
docx

Dif 2. kollokvium

n Kõrgemat järku harilik DV-Üldkuju(F,x,y,y’,y’’,.., y ),kus x-sõltumatu muutuja,y=y(x) otsitav funkt ja y’.. ' n x , y , y , .. y on otsitava fun tuletised.Lahendiks y=y(x)>y=y(x,C1,C2,..,Cn). Normkuju: y =f ¿ , (n ) y (n−1) ¿(1) . Algtingimused y( x 0 ¿= y 0 ; y( x 0 ¿= y 0 ' ; y n−1 ( x 0 ) = y 0n�

Dif.võrrandid
88 allalaadimist
thumbnail
25
doc

Algebra ja geomeetria kordamine

MAATRIKS: Maatriks ­ nimetatakse ümarsulgudesse paigutatud reaalarvude tabelit, milles on eristatavad read ja veerud. Maatriksi mõõtmed ­ Maatriksit, milles on m rida ja n veergu nimetatakse täpsemalt (m,n)- maatriksiks ning arvupaari (m,n) selle maatriksi mõõtmeteks. Maatriksi järk ­ Omadus, mis esineb ainult ruutmaatriksil: Näiteks Mat(n,n) nim. n-järku maatriksiks. Maatriksi elemendid ­nimetatakse reaalarve, milledest maatriks koosneb. Maatriksi ja maatriksite hulga tähistused ­ Maatrikseid tähistatakse tavaliselt suurte ladina tähtedega: A, B,....X, Y, Z. Maatriksite elemente tähistatakse vastavate väikeste ladina tähtedega, mis võivad olla varustatud ka indeksitega: a, b, c, jne. Kõigi (kõikvõimalike mõõtmetega) maatriksite hulka tähistame edaspidi Mat abil ning kõigi (m, n)-maatriksite hulka tähistame edaspidi Mat(m, n) abil. Ruutmaatriks ­maatriks, mille ridade arv on võrdne veergude arvuga, s.t. m=n

Algebra ja geomeetria
62 allalaadimist
thumbnail
26
docx

Lineaaralgebra eksami kordamisküsimused vastused

tabelit, milles on eristatavad read ja veerud. 31.maatriksi mõõtmed-Maatriksit milles on m rida ja n veergu nimetatakse (m,n)-maatriksiks. Arvupaari (m,n) nimetatakse selle maatriksi mõõtmeteks 32.maatriksi järk- naturaalarvude paari m × n, kus m ja n on vastavalt maatriksi ridade ja veergude arvud. n rea ja veeruga ruutmaatriksi järguks loetakse lihtsalt arvu n. 33.maatriksi elemendid- Reaalarvud millest maatriks koosneb 34.maatriksi ja maatriksite hulga tähistused- Maatrikseid tähistatakse tavaliselt suurte ladina tähtedega (A,B,...,X,Y,Z). Maatriksi elemente tähitatakse vastavate väikeste ladina tähtedega, mis võivad olla varustatud ka indeksitega (a,b,c1,xmn). Kõikvõimalike mõõtmetega maatriksi hulka tähistatakse Mat abil ning kõigi (m,n)-maatriksite hulka tähistatakse Mat(m,n) abil. 35.Ruutmaatriks-Maatriks, mille ridade arv on võrdne veergude arvuga m=n 36

Matemaatiline analüüs 1
124 allalaadimist
thumbnail
24
rtf

Lineaaralgebra eksam

A = ||aij|| = (aij R iga i ja j korral) Erikujulised maatriksid: 1. ruutmaatriksid (m=n) 2. diagonaalmaatriks (m=n; aij = 0 ij) 3. skalaarmaatriks (m=n; aij = 0 ij; a11 = a22 = ... = ann) Lineaarsed tehted maatriksitega A = ||aij|| Kmxn; B = ||bij|| Kmxn; c K 1. liitmine: A + B = ||cij|| Kmxn; cij = aij + bij i,j 2. skalaariga korrutamine: cA = ||dij|| Kmxn; dij = caij i,j Samad omadused kui vektorite korral, kus = A, = B, = C, V = Rnxm 7. Maatriksite korrutamine. Korrutamise omadused ja seos lineaarsete tehetega. A = ||aij|| Kmxn; B = ||bjk|| Knxp A reavektorid: 1 = (a11; a12; ...; a1n) Kn ... m = (am1; am2; ...; amn) Kn B veeruvektorid: 1 = (b11; b21; ...; bn1) Kn ... p = (b1p; b2p; ...; bnp) Kn AB = A*B = ||ik|| Kmxp; reavektorid: 1 = (11; 12; ...; 1p) Kn ... m = (m1; m2; ...; mp) Kp Maatriksite korrutamise omadused 1. maatriksite korrutamine pole kommutatiivne, st üldjuhul AB BA; kui AB =

Lineaaralgebra
199 allalaadimist
thumbnail
81
pdf

Kõrgem matemaatika / lineaaralgebra

Kõrgema matemaatika kordamisküsimused 1. Maatriksi definitsioon. Maatriksi elemendid. Lineaarsed tehted maatriksitega (liitmine ja skalaariga korrutamine). Nullmaatriks. Transponeeritud maatriks 2. Maatriksite korrutise definitsioon. Korrutamise omadused ja seosed lineaarsete tehete ning korrutamise vahel. Ühikmaatriks. 3. Teist ja kolmandat järku determinandid. 4. Permutatsiooni definitsioon. Inversiooni definitsioon. n-järku determinandi definitsioon. Determinandi põhiomadused 5. Maatriksi elemendi minor. Alamdeterminant. Determinandi arendus rea ja veeru järgi. Determinantide teooria põhivalem. 6. Regulaarse maatriksi mõiste

Algebra I
198 allalaadimist
thumbnail
18
pdf

Algebra ja geomeetria: Tõestused

E1 = (ij) korrutise XE1 = (yij) üldelement avaldub = = , , , =1 mistõttu XE1 = X. Juhul kui E2 on m-järku ühikmaatriks, siis 2 = = = =1 Teoreem 2.2. Kui permutatsioonis omavahel ära vahetada kaks elementi, siis permutatsioon muudab paarsust. Tõestus. Tõestame esmalt teoreemi, kui permutatsioonis vahetatavad arvud on kõrvuti, s.o. permutatsioonist 1 ... +1 ... saame permutatsiooni 1 ... +1 ... Paneme tähele, et kummaski permutatsioonis arvudele i ja i+1 eelnevate ja järgnevate arvudega inversioonid säilusid. Ainus inversiooni muutus tekkis üleminekul paarilt (i, i+1) paarile (i+1, i). Seega inversioonide arv I (1 , ... , , +1 , ..

Sissejuhatus matemaatilisse...
65 allalaadimist
thumbnail
142
pdf

Matemaatilise analüüsi konspekt TTÜ's

Matemaatiline anal¨ uu¨s I Jaan Janno ii Sisukord 1 Funktsioonid ja nendega seotud m~ oisted 1 1.1 Reaalarvud ja Arvtelg. Absoluutv¨a¨artuse m~oiste. Reaalarvudest koosnevad hulgad. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 J¨a¨avad ja muutuvad suurused. Funktsiooni m~oiste ja esitusviisid. 3 1.3 Funktsioonide liigid. Konstantne funktsioon. Astme-, eksponent- ja trigonomeetrilised funktsioonid. . . . . . . . . . . . . . . . . . 6 1.4 P¨o¨ordfunktsiooni m~oiste. Logaritmfunktsioon. Arkusfunktsioonid. 8 1.5 Tehted funktsioonidega. Elementaarfunktsioon. Pol¨ unoom ja ratsionaalfunktsioon. . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.6 Ilmutatud ja ilmutamata funktsioonid. Parameetrilisel kujul an- tud jooned ja funktsioonid. . . . . . . . . . . . . . . . . . . . . . 19 1.7 H¨uperboolsed trigonomeetrilised funktsioonid. . . . . . . . .

Matemaatiline analüüs
47 allalaadimist
thumbnail
142
pdf

Matemaatiline analüüs I

Matemaatiline anal¨ uu¨s I Jaan Janno ii Sisukord 1 Funktsioonid ja nendega seotud m~ oisted 1 1.1 Reaalarvud ja Arvtelg. Absoluutv¨a¨artuse m~oiste. Reaalarvudest koosnevad hulgad. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 J¨a¨ avad ja muutuvad suurused. Funktsiooni m~oiste ja esitusviisid. 3 1.3 Funktsioonide liigid. Konstantne funktsioon. Astme-, eksponent- ja trigonomeetrilised funktsioonid. . . . . . . . . . . . . . . . . . 6 1.4 P¨o¨ ordfunktsiooni m~oiste. Logaritmfunktsioon. Arkusfunktsioonid. 8 1.5 Tehted funktsioonidega. Elementaarfunktsioon. Pol¨ unoom ja ratsionaalfunktsioon. . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.6 Ilmutatud ja ilmutamata funktsioonid. Parameetrilisel kujul an- tud jooned ja funktsioonid. . . . . . . . . . . . . . . . . . . . . . 19 1.7 H¨uperboolsed trigonomeetrilised funktsio

Matemaatika
42 allalaadimist
thumbnail
273
pdf

Lembit Pallase materjalid

YMM3731 Matemaatiline analu¨u¨s I 2007/08 ~o.-a. su¨gissemestril 3,5 AP 4 2-0-2 E S Dots. Lembit Pallas TTU¨ Matemaatikainstituut V-404, tel. 6203056 e-post: [email protected] K¨asitletavad teemad on toodud punktide kaupa. Neid punkte tuleb vaadelda ka kui kollokviumide ja eksami teooriak¨ usimusi. 1. Funktsiooni m~oiste ja esitusviisid 2. Funktsioonide liigitamine (paaris- ja paaritud funktsioonid, perioodilised funktsioo- nid, kasvavad ja kahanevad funktsioonid) 3. P¨o¨ordfunktsioon 4. Liitfunktsioon 5. Jada piirv¨aa¨rtus 6. Funktsiooni piirv¨aa¨rtus ¨ 7. Uhepoolsed piirv¨aa¨rtused 8. L~opmatult kasvavad ja l~opmatult kahanevad suurused 9. Piirv¨a¨artusteoreemid 10. L~opmatult kahanevate suuruste v~ordlemine 11. Funktsiooni pidevuse m~oiste. Tarvilik ja piisav tingimus funktsiooni pidevuseks 12. Elementaarfunktsioonide pidevus 13. L~oigul

Matemaatiline analüüs
808 allalaadimist
thumbnail
156
pdf

Kõrgem matemaatika

. . . . . . . . . . . 4 0.4 Summa sümbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1 Maatriksid ja determinandid 7 1.1 Maatriksi mõiste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Tehted maatriksitega . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Maatriksite korrutamine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 Teist ja kolmandat järku determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5 Kõrgemat järku determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.6 Determinantide omadused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 Pöördmaatriks

Kõrgem matemaatika
94 allalaadimist
thumbnail
19
doc

Õppematerjal

seda maatriksit DIAGONAALMAATRIKSIKS. Kui diagonaalmaatriksi kõik elemendid on omavahel võrdsed, siis nimetatakse seda maatriksit SKALAARMAATRIKSIKS. Kui skalaarmaatriksi peadiagonaali elemendid võrduvad ühega, siis nimetatakse seda maatriksit ÜHIKMAATRIKSIKS ja tähistatakse E. DEFINITSIOON 3. Kui ruutmaatriksi peadiagonaali all (või kohal) olevad elemendid on kõik nullid, st akl = 0, kui k > l (või k < l ), siis nimetatakse maatriksit KOLMNURKSEKS. DEFINITSIOON 4. Öeldakse, et maatriks Am×n on TRAPETSKUJULINE, kui elemendid tema nullist erinevate elementide a11, . . . , akk all, mis on koondatud maatriksi ülemisse vasakusse nurka, on nullid ja mõned viimased read võivad koosneda nullidest. St kui Am×n jaoks a11a22 . . . akk 0, k min(m, n), siis tema trapetskuju on järgmine: a11 a12 . . . a1k a1 k+1 . . . a1n 0 a22 . . . a2k a2 k+1 . . . a2n ....................... 0 0 . . . akk ak k+1 . . . akn

Kõrgem matemaatika
383 allalaadimist
thumbnail
19
doc

VEKTORALGEBRA PÕHIMÕISTEID

seda maatriksit DIAGONAALMAATRIKSIKS. Kui diagonaalmaatriksi kõik elemendid on omavahel võrdsed, siis nimetatakse seda maatriksit SKALAARMAATRIKSIKS. Kui skalaarmaatriksi peadiagonaali elemendid võrduvad ühega, siis nimetatakse seda maatriksit ÜHIKMAATRIKSIKS ja tähistatakse E. DEFINITSIOON 3. Kui ruutmaatriksi peadiagonaali all (või kohal) olevad elemendid on kõik nullid, st akl = 0, kui k > l (või k < l ), siis nimetatakse maatriksit KOLMNURKSEKS. DEFINITSIOON 4. Öeldakse, et maatriks Am×n on TRAPETSKUJULINE, kui elemendid tema nullist erinevate elementide a11, . . . , akk all, mis on koondatud maatriksi ülemisse vasakusse nurka, on nullid ja mõned viimased read võivad koosneda nullidest. St kui Am×n jaoks a11a22 . . . akk 0, k min(m, n), siis tema trapetskuju on järgmine: a11 a12 . . . a1k a1 k+1 . . . a1n 0 a22 . . . a2k a2 k+1 . . . a2n ....................... 0 0 . . . akk ak k+1 . . . akn

Kõrgem matemaatika
50 allalaadimist
thumbnail
204
pdf

Topoloogilised ruumid

¨ TALLINNA TEHNIKAULIKOOL MATEMAATIKAINSTITUUT Peeter Puusemp TOPOLOOGILISED RUUMID Loengukonspekt Tallinn 2003 SISUKORD Eess˜ona . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1 TOPOLOOGILINE RUUM . . . . . . . . . . . . . . . . . . . . . . . 6 1.1 Topoloogilise ruumi definitsioon . . . . . . . . . . . . . . . . . . . 6 1.2 Topoloogilise ruumi baas . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Kinnised hulgad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 ¨ 1.4 Ulesandeid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 ¨ 2 UMBRUSED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1 Punkti u ¨mbruste s¨ usteem . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Topoloogia m¨a¨aramine u ¨mbruste s¨

Matemaatiline analüüs 2
11 allalaadimist
thumbnail
5
docx

Lineaaralgebra Eksami küsimuste vastused

Aritmeetilised vektorid n-mõõtmeline aritm.vektor on n arvu(a1,a2,a3....an)kindlas jäjekorras.tähistatakse (.kõigi n-mõõtmelise vektorite this on . Lineaartehted kui p =(b1,b2,b3,...bn) ja CR. korrutis ) Omadused iga ­ , , leidub ,et null vektor, iga leidub vastand vektor ka , , (ab)=a() , 1* Skalaarkorrutis on arv ­ Omadused n-mõõtmeline aritm. ruumis skalaarkorrutise , 6. Maatriksi definatsioonid,lineaartehted ja nende omadused. (m*n) maatriks on m reast ja n veerust koosnev ristküliku kujuline arvude tab.,tähistatakse suurte tähtetega (A,B,C),arvud aijon maatriksite elemendid (kus i=1,2,3,...m ­rea indeks ja j=1,2,3...n-veeru indeks)kõigi (m*n) maatriksite hulk tähistatakse . Maatriksit A=aij - ruutmaatrikskui m=n ,eristatakse pea- ja kõrvaldiogonaale (a11,a12,a13...ann ­ peadiogonaali elemendid) jan (a1n,a2n-1...an1 ­ kõrvaldiogonaali elemendid).

Lineaaralgebra
952 allalaadimist
thumbnail
23
doc

Maatriksi algebra

0 0 0 1 8. Maatriksit, mille kõik elemendid on nullid, nimetatakse nullmaatriksiks ja tähistatakse tähega O või . 2.Tehted maatriksitega Olgu antud maatriksid A = ( aik ) ja B = ( bik ). 1. Maatrikseid A ja B loetakse võrdseteks, kui nende vastavad elemendid aik ja bik on võrdsed. 2. Maatriksite A ja B summaks nimetatakse maatriksit C, mille elemendid cik = aik + bik; näiteks 1 5 3 6 4 -2 7 9 1 A= - 2 0 7 ja B= 5 -3 -3 , siis A + B = 3 -3 4. 5 -1 4 1 4 3 6 3 7

Kõrgem matemaatika
188 allalaadimist
thumbnail
28
docx

MAATRIKSALGEBRA

0 0 0 1 . E= 8. Maatriksit, mille kõik elemendid on nullid, nimetatakse nullmaatriksiks ja tähistatakse tähega O või . 2.Tehted maatriksitega Olgu antud maatriksid A = ( aik ) ja B = ( bik ). 1. Maatrikseid A ja B loetakse võrdseteks, kui nende vastavad elemendid aik ja bik on võrdsed. 2. Maatriksite A ja B summaks nimetatakse maatriksit C, mille elemendid cik = aik + bik; näiteks 1 5 3 6 4 - 2 7 9 1 - 2 0 7 5 - 3 - 3 3 - 3 4 5 -1 4 1 4 3 6 3 7 A= ja B= , siis A + B = . 3. Maatriksite A ja B vaheks nimetatakse maatriksit C, mille

Matemaatika
27 allalaadimist
thumbnail
8
docx

Matemaatiline analüüs I 2. teooria KT vastused

TÕESTUSED, TULETUSKÄIGUD, PÕHJENDUSED!!! 23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana y = f'(a)x + , kus = r(x)x Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). funktsiooni muut y koosneb kahest liidetavast, millest esimene on diferentsiaal dy = f'(a)x ja teine on . M~olemad liidetavad on l~opmatult kahanevad protsessis x 0. V~ordleme neid suurusi x suhtes. Esiteks, eelduse f'(a) 0 p~ohjal saame lim dy x= lim f'(a)/x* x= lim f'(a) = f(a) 0. x0 x0 x0 Teiseks kehtib lim / x = lim r(x)x /x = lim r(x) = 0. x0 x0 x0 N¨aeme, et esimene liidetav, so diferentsiaal dy on sama j¨arku l~opmatult kahanev suurus kui x ja teine liidetav on k~orgemat j¨arku l~opmatult kahanev suurus x suhtes. J¨arelikult v¨aikese x korral hakkab diferentsiaal funktsiooni muudu avaldises domineerima. Seet~ottu v~oime lugeda diferentsiaali dy funkt- siooni muudu peaos

Matemaatika
47 allalaadimist
thumbnail
64
pdf

Kolokvium 1 materjal

TTU¨ Matemaatikainstituut http://www.staff.ttu.ee/math/ Ivar Tammeraid http://www.staff.ttu.ee/itammeraid/ ¨ US MATEMAATILINE ANALU ¨ I Elektrooniline ~oppevahend Tallinn, 2001 Tr¨ ukitud versioon: Ivar Tammeraid, Matemaatiline anal¨ uu ¨ Kirjastus, ¨s I, TTU Tallinn 2001, 227 lk, ISBN 9985-59-289-1 ¨ Raamatukogu Viitenumber http://www.lib.ttu.ee TTU ~opikute osakonnas 517/T-15 c Ivar Tammeraid, 2001 Sisukord 0.1. Eess~ ona K¨aesoleva ~ oppevahendi aluseks on autori poolt viimastel aastatel Tallinna Tehnika¨ ulikoo- lis bakalaureuse~ oppe u ¨li~ opilastele peetud u ¨he muutuja funktsiooni diferentsiaal- ja inte- graalarvutuse loengud nimetuse "Matemaatiline anal¨ uu¨s I" all. Siiski ei ole tegu pelgalt u ¨hel semestril esitatu kirjapanekuga. Lisatud on

Matemaatiline analüüs
65 allalaadimist
thumbnail
14
doc

KT spikker

1.Lineaarse võrrandisüsteemi definitsioon. Võrrandisüsteemi kordajad, vabaliikmed, lahend. Süsteemi maatriks ja laiendatud maatriks. Lineaarse võrrandi all mõistetakse võrrandit kujul a1 x1 + a2 x2 + ... + an xn = b , (1) kus a1 , a2 , ... , an ja b on fikseeritud arvud ning x1 , x2 , ... , xn on tundmatud. Arvu b nimetatakse vaadeldava võrrandi vabaliikmeks, arve a1 , a2 , ... , an aga tema kordajateks. Def. 1. Võrrandi (1) lahendiks nimetatakse selliseid tundmatute x1 , x2 , ... , xn väärtusi c1 , c2 , ..

Lineaaralgebra
265 allalaadimist
thumbnail
2
doc

Matemaatika eksamiks

Tehted maatriksitega: Liitmine [aij]+-[bij]=[aij+-bij], Skalaariga korrutamine k[aij]=[kaij], Korrutamine Am·n·Bn·p=Cm·p, Reaalarve, milledest maatriks koosneb, nimetatakse maatriksi elementideks. Maatriksiks nimetatakse ¨umarsulgudesse paigutatud reaalarvude tabelit, milles on ristatavad read ja veerud. Maatriksit, mille ridade arv on v~ordne veergude arvuga, s.t. m = n, nimetatakse ruutmaatriksiks. Maatriksit, mille ridade arv erineb veergude arvust, s.t. m 6= n, nimetatakse ristk¨ulikmaatriksiks. Ruutmaatriksit m~o~otmetega (n, n) nimetatakse ka n-j¨arku maatriksiks

Informaatika1
75 allalaadimist
thumbnail
9
docx

Lineaaralgebra

kordinaadid-baasiks on iga 2 lin.sõltumatu vektor sirge- baasiks on iga 3 lin.sõltumatu vektor aritmeetiline vektorruum-valitakse R ruumis B={ 1 2 ... m } ,avaldub aritm.vektor n x =( x 1 x 2 ... x n ) x =x1 1 + x 2 2 +...+ x n n kordinaadid-vektori x arvud ( x 1 x 2 ... x n )on B baasil valitud kordinaadid. 3-mõõtmeline ruum-on baasiks iga 3-lin.sõltumatu vektor 7) Maatriksi mõiste, maatriksite liigid ja lineaartehted maatriksitega. Maatriksite vekrorruum. Maatriksiks nimetatakse ristkülikukujulist elementide tabelit, mis koosneb m reast ja n veerust. Maatriksi elemente tähistatakse aik, kus i näitab, millises reas ja k, millises veerus element asub. Maatrikseid tähistatakse suurte tähtedega A, B, C, . . . Maatriksi üldkuju on: a11 a12 ... a1n

Matemaatiline analüüs 2
32 allalaadimist
thumbnail
9
doc

Lineaaralgebra

.. ; am 2 ) , ........................ n = ( a1n ; a2 n ; ... ; amn ) . Def. 1. ( m × n ) -maatriksite A = ( aij ) ja B = ( bij ) summaks nimetatakse ( m × n ) -maatriksit A + B = ( cij ) , kus cij = aij + bij kõigi indeksite i ja j võimalike väärtuste korral. Sellest definitsioonist nähtub, et maatriksite liitmiseks tuleb liidetavates samade indeksitega elemendid liita. Def. 2. Maatriksi A = ( aij ) m× n korrutiseks skalaariga c nimetatakse maatriksit cA = c A = ( cij ) m× n , kus cij = caij kõigi indeksite i ja j võimalike väärtuste korral. Definitsioonist nähtub, et maatriksi korrutamiseks arvuga c tuleb tema kõik elemendid läbi korrutada selle arvuga

Lineaaralgebra
920 allalaadimist
thumbnail
13
pdf

Majandusmatemaatika IIE eksami kordamisküsimused

Lahendskeem: (A!E)- >Gaussi teisend->(E!A-1). N: 248 -2 0 2 468 2. Leontjevi staatiline mudel 1 2 lõpptoodang y kogutoodang x 1 100=x11 160=x12 240 500 2 275 40 85 400 sisemine tarbimine Leontjevi mudel aitab leida samasugust tabelit järgmise aasta jaoks, kui uus lõpptoodang y=(200, 100) Otsekulude maatriks A, aij=xij/xj (1) 100/500 160/400 A= 275/500 40/400 Ax+y=x (2) ­ tasakaaluvõrrand sisemise tarbimise, lõpp- ja kogutoodangu vahel Teades lõpptoodangu uut vektorit same koostada sarnase tabeli järgmise aasta jaoks. Selleks teisendame valemit 2. x-Ax=y (E-A)x=y x=(E-A)-1y=By (3) ­ B on täiskulude maatriks. Leiame E-A ning selle pöördmaatriksi ning same uue kogutoodangu maatriksi: Uusx=By a11=0,2=uusx11/uusx1=uusx11/440, uusx11=0,2*440=88

Majandusmatemaatika
623 allalaadimist
thumbnail
22
doc

Kõrgem matemaatika

KORDAMISKÜSIMUSED 2015/2016 Kõrgem matemaatika MTMM. 00.145 (6EAP) 1. Maatriksi mõiste, järk, tähistused, liigid. Maatriks on ristkülikukujuline arvude tabel, milles on m-rida ja n-veergu ja mis on ümbritsetud ümarsulgudega. Maatriksit tähistatakse suure tähega. Kui aij on reaalarvud ning i = 1; 2;...;m ja j = 1; 2;...; n, siis tabelit: nimetatakse täpsemalt (m x n)-maatriksiks ja kasutatakse tähistusi Am x n või Amn. Arvupaari (m; n) nimetatakse maatriksi A mõõtmeteks. Tabelis paiknevaid arve aij nimetatakse maatriksi elementideks. i ­ reaindeks; j ­ veeruindeks.

Kõrgem matemaatika
212 allalaadimist
thumbnail
3
docx

Lineaalalgebra Esimese KT konspekt

Maatriks arvutus Def 1 : (mxn) m korda n järku arv maatriks A nim mn arvust moodustatud tabelit, milles on m rida ja n veergu. NT filmilint, male- ja kaberuudud. Maatrikselemendid on elemendid, millest maatriks koosneb. Ai-reaindeksj- veeruindeks I= 1, 2, .....m j= 1, 2, ......n A=( a11 a12 a13 ....a1n) ( a21 a22 a23....a2n) ( a31 a32 a33 ....a3n) m=n (ruutmaatriks) nxn n2- maatriks mn (ristkülikmaatriks) Maatriksi seda osa, kus paiknevad elemendid a11 ; a22 ; a33 ..... akk nimetatakse maatriksi peadiagonaaliks. Maatriksi seda osa, kus paiknevad elemendid a1n ; a2n-1 ; a3n-2 .... akn(k-1) nimetatakse maatriksi kõrvaldiagonaaliks. a11 priviligeeritud element. Tehted maatriksiga Def 2 : maatriksid A ja B loetakse võrdseks, kui nad on sama järku ( ühepalju ridu ja veerge) ja nende kõik vastavad elemendid on võrdsed . A: (pxq) B: (rxs) p=r q=s

Matemaatika
226 allalaadimist
thumbnail
13
doc

Kõrgema matemaatika eksam

1. Maatriksi mõiste, järk, tähistused, liigid. Maatriks on ristkülikukujuline arvude tabel, milles on m-rida ja n-veergu ja mis on ümbritsetud ümarsulgudega. Maatriksit tähistatakse suure tähega: Maatriksi järk tähistab maatriksi mõõtmeid: A on m*n järku maatriks. Liigid: · Ruutmaatriks (m=n) · Diagonaalmaatriks ­ ruutmaatriks, mille peadiagonaalis arvud, muud elemendid 0-d. · Ühikmaatriks ­ diagonaalmaatriksi erijuht. Peadiagonaali elemendid 1-d. Täh E. · Nullmaatriks ­ kõik nullid. Täh . 2. Tehted maatriksitega (korrutamine arvuga, liitmine, lahutamine, korrutamine). · Korrutamine arvuga: korrutades maatriksit reaalarvuga, muutuvad kõik elemendid, selle arvu korra suuremaks.

Kõrgem matemaatika
356 allalaadimist
thumbnail
28
pdf

Kõrgema matemaatika üldkursus

Determinandi väärtus ei muutu, kui tema mingi rea elementidele juurde liita mis tahes arv kordsed teise rea vastavad elemendid. 7. Kuna determinant on induktiivselt defineeritud (esmalt esimest järku, selle abil teist, selle abil kolmandat jne.), saame suuremaid determinante arvutada nende miinorite ehk alamdeterminantide summana. 8. Maatriksi ja determinantide korrutis on võrdne nende maatrikskorrutise determinandiga olenemata maatriksite järjekorrast . Miinorid ja alamdeterminandid. Elemendi aik miinoriks nimetatakse determinanti, mis saadakse antud maatriksist või determinandist i-nda rea ja k-nda veeru ärajätmisel. Miinorit tähistatakse Mik. Elemendi aik alamdeterminandiks nimetatakse selle elemendi miinorit, kui indeksite summa i+k on paarisarv ja miinorit märgiga -, kui indeksite summa on paaritu arv. Alamdeterminanti tähistatakse Dik .

Kõrgem matemaatika
324 allalaadimist
thumbnail
48
doc

Lineaaralgebra täielik konspekt

püstjoontega): A = (aij ) = [aij ] = aij , (1.1) kus i = 1,...,n on rea number, j = 1,...,m on veeru number. Arve aij nimetatakse maatriksi elementideks. Nii et esimene alumine indeks näitab, mitmendas reas asub element , ja teine alumine indeks - mitmendas veerus asub element. Maatriksi suurust saab väljendada valemiga: ridade arv x veergude arv. Antud maatriks (1.1) on suurusega n x m ja seda saab kirjutada järgmiselt : An x m või dim A = n x m (dimensioon ­ suurus). 3 -4 2 Näide 1: Antud maatriks A = . Siin A2x3 , a12 = - 4, a23 = -6,5 . 0 1 - 6,5 Maatriksid on võrdsed oma vahel , kui on võrdsed kõik vastavad elemendid antud matriksites, s.t. A = B , kui aij = bij , i = 1,...,n , j = 1,...,m . Definitsioon 2

Kõrgem matemaatika
858 allalaadimist
thumbnail
57
rtf

Maatriksid

a = aij A = (aij ) = ij , (1.1) kus i = 1,...,n on rea number, j = 1,...,m on veeru number. Arve aij nimetatakse maatriksi elementideks. Nii et esimene alumine indeks näitab, mitmendas reas asub element , ja teine alumine indeks - mitmendas veerus asub element. Maatriksi suurust saab väljendada valemiga: ridade arv x veergude arv. Antud maatriks (1.1) on suurusega n x m ja seda saab kirjutada järgmiselt : An x m või dim A = n x m (dimensioon ­ suurus). 3 - 4 2 A = Näide 1: Antud maatriks 0 1 - 6,5 . Siin A , a = - 4, a = -6,5 . 2x3 12 23 Maatriksid on võrdsed oma vahel , kui on võrdsed kõik vastavad elemendid antud matriksites, s.t. A = B , kui aij = bij , i = 1,...,n , j = 1,...,m

Matemaatika
283 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun