Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi

DV II KT vastused (0)

1 Hindamata
Punktid
Vasakule Paremale
DV II KT vastused #1 DV II KT vastused #2 DV II KT vastused #3 DV II KT vastused #4 DV II KT vastused #5 DV II KT vastused #6 DV II KT vastused #7
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 7 lehte Lehekülgede arv dokumendis
Aeg2016-01-29 Kuupäev, millal dokument üles laeti
Allalaadimisi 73 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor MarisG Õppematerjali autor

Märksõnad

Sarnased õppematerjalid

thumbnail
138
docx

GEODEESIA II eksami vastused

Geodeesia eksamiteemad kevad 2013 1. Geodeesia mõiste ja tegevusvaldkond, seosed teiste erialadega Geodeesia on teadus Maa ning selle pinna osade kuju ja suuruse määramisest, seejuures kasutatavatest mõõtmismeetoditest, mõõtmistulemuste matemaatilisest töötlemisest ning maapinnaosade mõõtkavalisest kujutamisest digiaalselt või paberkandjal kaartide, plaanide ja profiilidena. Geodeesia on teadusharu, mis vaatluste ja mõõtmiste tulemusena määrab terve maakera kuju ja suuruse, objektide täpsed asukohad, aga ka raskusjõu väärtused ja selle muutused ajas. Samuti ka objektide koordineerimine ja nende omavaheliste seoste kujutamine, seda just topograafiliste kaartide abiga. Objektide asukohtade väljakandmine loodusesse. TEGEVUSVALDKONNAD: Kõrgem geodeesia ­ Maa tervikuna, kuju ja suurus; insenerigeodeesia ­ geodeetilised tööd rajatiste projekteerimiseks, alusplaanid, ka maa-alused kommunikatsioonid, kaevandused, erinevad trassid; topograafia

Geodeesia
thumbnail
20
doc

Eksami vastused

RAHVUSVAHELINE MAJANDUS KORDAMISKÜSIMUSED 1. Mõisted: rahvusvaheline majandus, välis- ja sisemajandus, maailmamajandus, majanduskord, uus rahvusvaheline majanduskord. · Rahvusvaheline majandus- käsitleb riikide vastastikust majanduslikku sõltuvust, ta analüüsib kaubavoolusid, teenuste liikumist ja makseid ühe riigi ning ülejäänud maailma vahel, neid voogusid reguleerivat poliitikat ja selle mõju riigi heaolule; uurib üksikute rahvusriikide vahelisi suhteid maailma nappide ressursside jaotamisel inimvajaduste rahuldamiseks. · Välismajandus- hõlmab riikidevahelised tehingud, nagu rahvusvaheline kaubandus, teenuste vahetamine, kapitali ja maksete liikumine jmt., mille varal riigid osalevad rahvusvahelises tööjaotuses, et tõsta oma heaolu. · Sisemajandus- selliste majanduslike operatsioonide (tootmine, jaotus/müük, tarbimine) kogum, mis

Rahvusvaheline majandus
thumbnail
17
docx

Eksami küsimuste vastused

Õiguse eksami küsimused 1. Õiguse eelastmed: Tavad, traditsioonid ja moraalinormid. Olid valitsevaks inimeste kooselus juba enne õigust. Olid sotsiaalseteks harjumusteks, mis korrastasid inimkäitumist, kergendasid ja vääristasid ühiskondlikku elu. Tunnused: 1) üldise iseloomuga 2) üldkohustuslikud 3) garanteeritud korras 2. Ius non scriptum, ius scriptum: ius non scriptum - kirjutamata õigus - teadlased on tuvastanud, et õigus eksisteeris ka enne, kui tekkisid esimesed kirjalikud allikad ja seda perioodi nim. õiguse eelajalooks e. ius non scriptum. Õiguse ja õigusmõistmise tunnused olid juba sugukodliku korra ajal, reeglite eiramise eest karistati sugukonnast väljaheitmisega (= surmanuhtlusega). Veretasu e. kättemaks. ius scriptum - kirjutatud õigus - vormaalselt määratletud ja lähtub riigist kui institutsioonist. Riik sekkus, kui seda nõudis kannatanu. 3. Õiguse tähistamine ja õiguse idee: Õi

Õigus
thumbnail
8
docx

Dif 2. kollokvium

n Kõrgemat järku harilik DV-Üldkuju(F,x,y,y’,y’’,.., y ),kus x-sõltumatu muutuja,y=y(x) otsitav funkt ja y’.. ' n x , y , y , .. y on otsitava fun tuletised.Lahendiks y=y(x)>y=y(x,C1,C2,..,Cn). Normkuju: y =f ¿ , (n ) y (n−1) ¿(1) . Algtingimused y( x 0 ¿= y 0 ; y( x 0 ¿= y 0 ' ; y n−1 ( x 0 ) = y 0nâˆ

Dif.võrrandid
thumbnail
14
docx

Diferentsiaalvõrrandite eksami konspekt

1. Diferentsiaalvõrrandi üld- ja erilahend. Väärtus ja raja ülesanne Def 1.1 Võrrandit, milles osalevad sõltumatu muutuja, tundmatu funktsioon ja selle tuletised nim diferentsiaalvõrrandiks. (1.1) F(x, y(), y'(), ...)=0 Kui otsitav funktsioon y sõltub ainult ühest muutujast, siis seda nim harilikuks diferentsiaalvõrrandiks. Kui otsitav funktsioon sõltub mitmest muutujast, siis on tegemist osatuletistega diferentsiaalvõrranditega. Kõrgema järguga tuletis dif.võr määrab ära selle võrrandi järgu. Esimest järku dif võrrand on (1.2) Def 1.2 N-järku dif.võr (1.1) üldlahendiks nim n-parameetrilist lähtuvat funktsioonide parve või peret, mis muudab võrrandi samasuseks sõltumata parameetrite väärtustest. (1.3) Dif.võr lahendamist nim selle võrrandi integreerimiseks ja selle lahendid integraaliks, lahendi graafikut nim integraaljooneks. Kui n-järku võrrandile lisada n-algtingimust: (1.4) Siis saame algväärtuseks ülesande (1.1). esimest järku algväär

Dif.võrrandid
thumbnail
1
docx

Diferntsiaalvõrrandidte teooria nr. 2

1. Kõrgemat järku harilik DV. Lahendi olemasolu, ühesuse tingimused, üldlahend, erilahend. Kõrgemat jär harilikud dvid: Üldkuju: F(x, y, y', y'', ..., y (n)) = 0 (1), kus x on sõltumatu muutuja, y = y(x) on otsitav funktsioon ja y', ..., y (n) on otsitava funktsiooni tuletised. Normaalkuju: y(n) = f(x, y, y', ..., y (n-1))(2) (( F(x,y, y')=0 (1) ja y' =f(x;y) (2))) Eksaktne lahend: x0, y0, y01, ..., y0n-1, Algtingimused: nii mitu konstanti kui suur on DV järku konstant. ***{y(x0) = y0 {y'(x0) = y0(1) {... {y(n-1)(x0) = y0(n-1) ***Lahendi olemasolu : kõrgemat järku DV lahend ­ funktsioon, mille asendamisel võrrandisse saame samasuse F(x, y(x), y'(x), y''(x), ..., y(n)) 0 x. Peano teoreem e. olemasolu teoreem: olgu funktsioon f pidev muutujate x, y, y', y'', ..., y(n-1) piirkonnas D, siis iga punkt (x0, y0, y0(n-1) ) D korral on Cauchy ülesanne {(1);(2)} vähemalt 1 lahend. Cauchy teoreem e. ühesuse tingimused

Dif.võrrandid
thumbnail
5
doc

Matemaatilise analüüsi 2.kollokviumi

Mitmemuutuja funktsiooni mõiste. Mitmemuutuja funktsiooni piirväärtuse definitsioon. Pideva mitmemuutuja Kui funktsiooni z=f(x,y) on diferentseeruv kohal (x,y), siis funktsioon f on pidev sellel kohal. funktsiooni definitsioon. Kahemuutuja funktsiooni pidevuse geomeetriline sisu. Funktsioon z=f(x,y) on diferentseeruv kohal (x,y) siis, kui funktsioonil z=f(x,y) on pidevad osatuletised fx ja fy kohal (x,y). Kui hulga Rn igale punktile P(x1, . . . , xn) on vastavusse seatud muutuja u R kindel väärtus, siis öeldakse, et hulgal on Kui funktsiooni f(x,y) osatuletised fx(x,y) ja fy(x,y) on diferentseeruvad kohal (x,y), siis fxy = fyx kohal (x,y). defineeritud n-muutuja (skalaarväärtusega) funktsioon. Suurust df:=fx(x,y)dx + fy(x,y)dy, kus dx:= x ja dy:= y, nimetatakse funktsiooni f(x,y)

Matemaatiline analüüs 2
thumbnail
75
doc

Soojusautomaatika eksami vastused

Soojusautomaatika eksamiküsimuste vastused 1. Põhimõisted automatiseeritud tootmise alalt. Automaatikasüsteemide klassifikatsioon nende otstarbe järgi. Näited. Automatiseeritud tootmise põhimõisted: 1. Objekt 2. Regulaator 1. Andur 2. Tajur 3. Automaatikasüsteem Automaatikasüsteemide klassifikatsioon otstarbe järgi: 1. Automaatreguleerimise süsteemid (ARS) 2. Distantsioonjuhtimise süsteemid (DJS) 3. Tehnoloogilise kaitse süsteemid 4. Automaatblokeeringu süsteemid (ABS) 5. Reservseadme automaatse käivitamise süsteem (RAKS) 6. Automaatsed tehnoloogilise kontrolli süsteemid (ATKS) 7. Signalisatsioonisüsteemid (SS) valgus ja helisüsteemid 1. Tehnoloogiline SS andmed seadmete töö ja üksikute parameetrite kohta 2. Avarii SS teatavad võimalikest avariilistest olukordadest ja juba tekkinud avariidest 3. tsentraalsed SS on ette nähtud signalisatsioonisüsteemi korrasoleku ja

Soojusautomaatika




Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri





Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun