Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse Registreeri konto
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

Matemaatiline analüüs II - sarnased materjalid

funk, integraal, rtus, koonduv, tuletis, muutuja, piirv, koonduvus, rrand, teoreem, grad, geom, osadeks, vektor, regulaarne, joonintegraal, dirichlet, arvrida, integraalide, tame, reaks, reaalarvu, rtuse, tmelise, rkidega, aditiivsus, lineaarsus, steem, integraalis, integraaliks, epsilon, gradient, plik, osatuletised, sisepunkt, joonega, summaks
thumbnail
10
doc

Matemaatiline analüüs II

keha Q ruumalaga V. Üks võimalus on eelnevates teadmistest saadud valem V = (x,y)dxdy Järgnevalt käsitleme pisut teistsugust juhtu. Vaatleme keha Q, mis on alt pinnaga z= 1(x,y) ja ülalt pinnaga z= 2(x,y). Olgu Q projektsioon xy-tasandil tähistatud D-ga. Meid huvitab Q ruumala. Näitame, et V saab esitada 1 ja 2 vahe integraalina, st V= [ 2(x,y) ­ 2(x,y)] dxdy D 8. Muutujate vahetus kahekordse integraali all. Kahekordne integraal (x,y)dxdy ja kaks funktsiooni u= u(x,y) ja v=v(x,y), mis on määratud piirkonnas D. Eesmärgiks on sooritada muutuja vahetus, mille tulemusl asendatakse x ja y u ja v-ga. Kuna funktsioonid u ja v on ühesed kujutsied, siis seavad nad igale punktile P=(x,y) hulgastt D vastavusse ühe kindla punkti P'=(u,v) uv-tasandil. Kui P jookseb läbi kogu piirkonna D siis, siis kujutuspilt P' kujundav uv-tasandi teatud piirkonna D'. Et kehiks

Matemaatiline analüüs
523 allalaadimist
thumbnail
10
doc

Matemaatiline analüüs I

vahemik (a, b) nii, et A (a, b). Jääv suurus ­ suurus, mille arvuline väärtus ei muutu. Muutuv suurus ­ suurus, mis võib omandada erinevaid arvulisi väärtusi. Suuruse muutumispiirkond ­ muutuva suuruse kõigi võimalike väärtuste hulk. Funktsioon ­ Olgu antud 2 muutuvat suurust x ja y. Funktsiooniks nimetatakse kujutist, mis seab suuruse x igale väärtusele tema muutumispiirkonnast vastavusse suuruse y ühe kindla väärtuse. Funktsiooni argument ­ Muutuja x Sõltuv muutuja ­ Muutuja y Määramispiirkond ­ argumendi x muutumispiirkond Väärtuste hulk - Y={ f(x) || x X } Funktsiooni esitamine tabelina ­ Funktsiooni argumendi võimalikud väärtused esitatakse tabeli ühes reas ja neile vastavad funktsiooni väärtused tabeli teises reas. Võimalik vaid siis, kui funktsiooni argumendil on lõplik arv väärtusi. Funktsiooni analüütiline esitusviis ­ valemi kujul. Funktsiooni graafiline esitusviis ­ esitatakse graafikuna tasandi ristkoordinaadistikus.

Matemaatiline analüüs 1
55 allalaadimist
thumbnail
142
pdf

Matemaatiline analüüs I

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.8 L~opmatult kahanevate ja l~opmatult kasvavate suuruste v~ordlemine. 43 2.9 Funktsiooni pidevus. Katkevuspunktide liigitus. . . . . . . . . . . 45 ¨ 2.10 Uhepoolne pidevus. Pidevus hulkadel. Elementaarfunktsioonide pidevus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.11 L~oigul pidevate funktsioonide omadusi. . . . . . . . . . . . . . . . 52 3 Tuletis ja diferentsiaal 57 3.1 Tuletise, diferentseeruva funktsiooni ja diferentsiaali m~oisted. . . 57 3.2 N¨aiteid tuletiste kohta rakendustes. . . . . . . . . . . . . . . . . . 60 3.3 Tuletiste arvutamise p~ohireeglid . . . . . . . . . . . . . . . . . . . 61 3.4 Ilmutamata funktsiooni, p¨o¨ordfunktsiooni ja parameetrilise funk- tsiooni diferentseerimine. . . . . . . . . . . . . . . . . . . . . . . . 62

Matemaatika
41 allalaadimist
thumbnail
20
docx

MATEMAATILINE ANALÜÜS I

iga ε>0 puhul leidub niisugune arv δ>0, et iga x≠a puhul, mis rahuldab värratus |x-a|< δ, kehtib värratus |f(x)-L|< ε Piirväärtus ei eksisteeri: 1. Parem-ja vasakpoolsed piirväärtused eksiteerivad kuid ei võrdu 2. Funktsiooni väärused kasvavad tõkestamatulet punkti a ümbruses 3. Funktsiooni väärtuste suur võnkumine punkti a ümbruses Graafiline esitus: 7. Teoreem ühepoolsete piirväärtuste võrdumise kohta. Ühepoolsete piirväärtuste tähistused lim ¿ x→ a=L lim ¿ x →a f ( x )=L on olemas ainult siis, kui lim ¿ x →a f ( x )=¿ Piirväärtus ¿ ¿ L1 nimetatakse funktsiooni f(x) parempoolseks piirväärtuseks

Matemaatiline analüüs 1
36 allalaadimist
thumbnail
10
docx

Matemaatiline analüüs I

1. Sõnastada ja tõestada piirväärtusteoreem kahe funktsiooni summa piirväärtuse arvutamiseks protsessis x +. Teoreem (1): Kahe, kolme, üldiselt lõpliku hulga muutuvate suuruste algebralise summa piirväärtus võrdub nende muutuvate suuruste piirväärtuste algebralise summaga. lim(u1 + u2 +....) = lim u1 + lim u2 + ... Tõestus: Tõestan teoreemi kahe funktsiooni liitmise korral. Olgu lim f(x) = A ja lim g(x) = B (Vaatlen mõlemaid protsesse piirprotsessis x +)

Matemaatiline analüüs
351 allalaadimist
thumbnail
37
docx

Matemaatiline analüüs l.

Üksühese funktsiooni mõiste. Olgu antud funktsioon y = f(x). Vastavalt funktsiooni definitsioonile on tegemist kujutisega, mis seab igale argumendi x väärtusele oma määramispiirkonnast vastavusse ühe kindla y väärtuse. Uksühese funktsiooni pöördfunktsioon. Üksühese funktsiooni y = f(x) pöördfunktsiooniks nimetatakse kujutist, mis seab igale f(x)-le funktsiooni f väärtuste hulgast vastavusse x-i. Pöördfunktsiooni avaldise saame, kui lahendame võrrandi y = f(x) muutuja x suhtes. Vahetavad pöördfunktsioonis kohad esialgse funktsiooni määramispiirkond ja väärtuste hulk. Olgu x = g(y) üksühese funktsiooni y = f(x) pöördfunktsioon. Siis funktsioonid f ja g kompenseerivad teineteist järgmises mõttes. g[f(x)] = x , f[g(y)] = y . Funktsiooni y = f(x) ja tema pöördfunktsiooni x = g(y) graafikud kattuvad xy-teljestikus. Kui aga pöördfunktsiooni x = g(y) avaldises muutujate x ja y kohad vahetada, st esitada ta kujul y = g(x), siis

Matemaatiline analüüs
484 allalaadimist
thumbnail
16
doc

Matemaatiline analüüs

Tõkestatud hulga definitsioon: reaalarvudest koosnevat hulka A nimetatakse tõkestatuks, kui leidub lõplik vahemik ( a, b ) nii, et A ( a, b ). Tõkestatud hulgad on näiteks kõik lõplikud vahemikud ( a, b ), lõigud [a, b] ja poollõigud [a, b), (a, b]. Tõkestamata hulgad on aga näiteks lõpmatud vahemikud (-, a), (a, ) ja lõpmatud poollõigud (-, a], [a, ). 2. Jääv ja muutuv suurus. Suuruse muutumispiirkond. Funktsiooni definitsioon. Funktsiooni argument, sõltuv muutuja, määramispiirkond ja väärtuste hulk. Funktsiooni esitamine tabelina ja analüütiliselt. Funktsiooni graafiku mõiste. Graafiku omadused. V: Jääv ja muutuv suurus: Suurust, mis võib omandada erinevaid arvulisi väärtusi, nimetatakse muutuvaks suuruseks ehk muutujaks. Suurust, mille arvuline väärtus ei muutu, nimetatakse jäävaks suuruseks. Näiteks ühtlase liikumise korral on kiirus jääv suurus ja läbitud teepikkus muutuv suurus. Samas mitte ühtlase liikumise korral on ka kiirus

Matemaatiline analüüs
231 allalaadimist
thumbnail
3
docx

Matemaatiline analüüs 1

Arvutame lim(x0)?sinx/x?. Elementaarfunktsioon sinx/x ei ole x = 0 korral määratud (tekib määramatus y = f(x) - f(a) - funktsiooni muut kohal a . 0/0). Piirväärtuse arvutamisel kasutame l'Hospitali reeglit: Näitasime, et 27Olgu funktsioon y = f(x) diferentseeruv hulgas D. Siis on tema tuletis f hulgas D määratud funktsioon. Oletame, et f on samuti diferentseeruv hulgas D. Siis saame me arvutada funktsiooni f tuletise ehk funktsiooni f teise tuletise, mida tähistatakse f. Seda protseduuri võib jätkata

Matemaatiline analüüs 1
66 allalaadimist
thumbnail
13
docx

Matemaatiline analüüs I KT

Kui see on nii, on funktsioon üksühene. Üksühesust saab määrata ka nt graafiku abil - kui suvaline x-teljega paralleelne sirge läbib f-ni graafikut maksimaalselt ühes punktis, on funktsioon ühene. Üksühese funktsiooni pöördfunktsioon ­ Üksühese funktsiooni y = f(x) pöördfunktsiooniks nimetatakse kujutist, mis seab igale f(x)-le funktsiooni f väärtuste hulgast vastavusse x-i. Pöördfunktsiooni avaldise saame, kui lahendame y= f(x) muutuja x suhtes. Pöördfunktsioonis funktsiooni argument ja muutuja vahetavad kohad, samuti vahetavad kohad määramis- ja muutumispiirkond. g[ f(x) ] = x, f[ g(y) ] = y Kui g on f-ni f pöördfunktsioon, siis f on g pöördfunktsioon. Nende funktsioonide graafikud on sümmeetrilised sirge y = x suhtes (peegelduvad). Logaritmfunktsioon ­ on eksponentfunktsiooni pöördfunktsioon, sest x-teljega paralleelne sirge läbib eksponentfunktsiooni y = graafikut maksimaalselt ühes punktis.

Matemaatiline analüüs
136 allalaadimist
thumbnail
36
pdf

Matemaatiline analüüs

Siis x − x1 > 0. Jagades võrratuse positiivse arvuga x − x1 saame f(x) − f(x1)/ x − x1 ≤ 0. Võtame piirväärtuse: F’(x1) = lim f(x) − f(x1)/ x − x1 ≤ 0. x→x1 Võrratused näitavad, et f’(x1) ≥ 0 ja f’(x1) ≤ 0. See on võimalik vaid siis, kui f’(x1) = 0. Seega on lemma tõestatud juhul, kui x1-s on lokaalne miinimum. Analoogiliselt saab käsitleda ka juhtu, kui x1-s on lokaalne miinimum. 25. Sõnastada ja tõestada Rolle’i teoreem. Kui funktsioon f on lõigul [a,b] pidev, vahemikus (a,b) diferentseeruv ja rahuldab tingimust f(a) = f(b), siis leidub vahemikus (a,b) vähemalt üks punkt c nii, et f’(c) = 0. Tõestus. Kuna f(x) on pidev lõigul [a,b], siis saavutab ta oma suurima ja vähima väärtuse sellel lõigul. Olgu M suurim väärtus ja m vähim väärtus. Kui M = m, siis on funktsioon lõigul [a,b] konstantne, st kõigi x ∈ [a,b] korral kehtib f(x) = M = m. Sellisel juhul on f(x) tuletis

Matemaatiline analüüs 1
13 allalaadimist
thumbnail
3
doc

Matemaatiline analüüs 1

Reaalarvu a parempoolseks ümbruseks, kus > 0, nimetatakse hulka [a; a + ) = {xIax+a} Suuruse + M-ümbruseks, kus M > 0, nimetatakse vahemikku (M;+). Kui M > 0, siis M-ümbruseks nim ühendit (-;-M) ja(M) Muutuvat suurust nimetatakse tõkestatuks, kui leidub niisugune konstant M0, et kõik muutuva suuruse väärtused, alates mingist x M väärtusest, täidavad tingimust - M x M , s.t. . FUNKTSIOON:. . Kui muutuja x igale väärtusele piirkonnas X vastab muutuja y kindel väärtus, siis öeldakse, et y on muutuja x funktsioon piirkonnas X. Esitusviisid: Tabel, Analüütilisel kujul esitatud funktsiooni määramispiirkonnaks nimetatakse argumendi kõigi väärtuste hulka, mille korral see valem on määratud.; F.gaafikuks nim punktihulka Kui hulga X igale elemendile x on vastavusse seatud element y hulgast Y, siis öeldakse, et hulgal X on määratud ühe muutuja

Matemaatiline analüüs
119 allalaadimist
thumbnail
3
docx

Matemaatiline analüüs 2

Hulka C Rn nim kinniseks, kui ta sisaldab kõiki oma rajapunkte Hulka C Rn nim tõkestatuks, kui leidub reaalarv r>0, et C {QRn|d(0,Q)

Matemaatiline analüüs 2
166 allalaadimist
thumbnail
2
doc

Matemaatiline analüüs

Mitme muutuja funktsiooni mõiste Def: Kui igale x-I ja y-I väärtuste paarile mingis piirk D on vastavusse seatud muutuja z teatud kindel väärtus, siis öeldakse et z on kahe muutuja y ja x funktsioon. z=(x; y) või z=z(x; y) või z=(x; y) või z=F(x; y). (joon) D-x, y tasandi punktide hulk; - piirk D rajajoon e raja. Def1: Piirk D nim lahtiseks kui ta ei sisalda ühtegi oma rajajoone punkti; Def2: Piirk D nim kinniseks kui ta sisaldab kõiki oma rajajoone punkte. Näiteks on kaks hulka: A={(x; y)x2+y2 muutuja f-n. Def:

Matemaatiline analüüs
265 allalaadimist
thumbnail
3
doc

MATEMAATILINE ANALÜÜS I

ÕPPEAINE MATEMAATILINE ANALÜÜS I (kood YMM3731) PROGRAMM Õppeaine eesmärk · Anda ühe muutuja funktsiooni diferentsiaal- ja integraalarvutuse teoreeti-lised alused. · Õpetada lahendama mainitud teooriaga seotud põhilisi ülesandeid. · Näidata esitatud teooria võimalikke rakendusi praktikas ja teistes teadus- harudes. · Harjutada üliõpilasi matemaatilise sümboolikaga. Maht: 5 EAP ainepunkti, nädalatundide arv 2-0-2. Eeldusained: pole. Õppeaine sisu (orienteeruva loenguteks jaotusega): 1. Kasutatav sümboolika

Matemaatika analüüs I
210 allalaadimist
thumbnail
2
docx

Matemaatiline analüüs

Reaalarvu absoluutväärtuseks nimetatakse mitte-negatiivset reaalarvu, mis rahuldab tingimusi: |x|=-x, kui x<0 |x|=x, kui x>=0 Funktsiooniks nimetatakse vastavust, mille järgi sõltumatu muutuja igale väärtusele seatakse vastavusse sõltuva muutuja mingi väärtus. Funktsiooni määramispiirkonnaks nimetatakse argumendi x väärtuste hulka, mille puhul saab määrata y väärtusi vastavalt eeskirjale f(x). Funktsiooni muutumispiirkonnaks nimetatakse vastavalt määramispiirkonnale vastavat funktsiooni väärtuste hulka. Funktsiooni F(x) pöördfunktsiooniks nimetatakse funktsiooni f-1, mis seab igale f muutumispiirkonna väärtustele y vastavusse need väärtused x määramispiirkonnast, mille korral f(x)=y.

Matemaatika analüüs i
13 allalaadimist
thumbnail
8
docx

Matemaatiline analüüs KT2

Öeldakse, et funktsioonil f on punktis x1 lokaalne miinimum, kui 1. funktsioon f on määratud punkti x1 mingis ümbruses (x1 - , x1 + ); 2. iga x (x1 - , x1 + ) korral kehtib võrratus f(x) f(x1). Funktsiooni lokaalseid maksimume ja miinimume nimetatakse selle funktsiooni lokaalseteks ekstreemumiteks. Fermat' lemma - Kui funktsioonil f on punktis x 1 lokaalne ekstreemum ja funktsioon on diferentseeruv selles punktis, siis f(x1) = 0. 22. Sõnastada Rolle'i teoreem (tõestust ei kusi). Rolle'i teoreemi geomeetriline sisu. Sõnastada Lagrange'i teoreem (tõestust ei kusi). Lagrange'i teoreemi geomeetriline sisu. Rolle'i teoreem. Kui funktsioon f on lõigul [a, b] pidev, vahemikus (a, b) diferentseeruv ja rahuldab tingimust f(a) = f(b), siis leidub vahemikus (a, b) vähemalt üks punkt c nii, et f(c) = 0. Geomeetriline sisu. See on järgmine

Matemaatiline analüüs
231 allalaadimist
thumbnail
4
doc

Matemaatiline analüüs

Muutuja vahetus kahekordses integraalis x = x(u; v) f ( x, y )dxdy 1)need on ühesed; 2)võrrandisüst. On üheselt avaldatav u ja v suhtes; 3)f-nid y = y(u; v) D peavad olema pidevad; 4)peavad olema pidevad osatuletised mõlema muutuja järgi. (joon) f ( x; y ) = f [ x (u; v ); y (u; v )] = F (u; v ) * f ( x; y ) dxdy = F (u; v) J dudv D xu xv J = Jacobi determinant e jakobiaan. yu yv Kahekordne integraal polaarkoordinaatides x = cos

Matemaatiline analüüs
341 allalaadimist
thumbnail
16
docx

Matemaatiline analüüs 2 KT

1. funktsioon f on määratud punkti x1 mingis ümbruses (x1 − ɛ, x1 + ɛ); 2. iga x ∈ (x1 − ɛ, x1 + ɛ ) korral kehtib võrratus f(x) ≥ f(x1).  Fermat’ lemma - kui funktsioonil f on punktis x1 lokaalne ekstreemum ja funktsioon on diferentseeruv selles punktis, siis f’(x1) = 0. 20. Kõrgemat järku tuletiste definitsioonid. Olgu funktsioon y = f(x) diferentseeruv hulgas D. Siis on tema tuletis f’ hulgas D määratud funktsioon. Oletame, et f0 on samuti diferentseeruv hulgas D. Siis saame me arvutada funktsiooni f’ tuletise ehk funktsiooni f teise tuletise, mida tähistatakse f’’. Seda protseduuri võib jätkata. Funktsiooni f teise tuletise diferentseerimisel saame selle funktsiooni kolmanda tuletise f’’’ jne. Funktsiooni y = f(x) n-järku tuletiseks nimetatakse selle funktsiooni n − 1- järku tuletise tuletist ja tähistatakse f(n)

Matemaatika
14 allalaadimist
thumbnail
1
docx

Matemaatiline analüüs I teooria

sellist jada elementi xn , millest alates kõik järgnevad jada elemendid kuuluvad Tõkestamata hulgad on lõpmatud vahemikud. arvu a ümbrusesse (a ­ , a + ). Jada piirväärtust tähistatakse lim x n = a 2. Sõnastada arvu -ümbrus, arvu parem- ja vasakpoolne ümbrus. 11. Koonduva jada ja hajuva jada mõiste. kuitahes v aikese positiivse arvu korral saab n aidata sellist suuruse x v a Koonduv jada- lõplikku piirväärtust omav jada. Hajuv- mitteomav. a rtust, millest alates k oik j argnevad muutuva suuruse v a artused kuuluvad 13. * Öeldakse, et jada (Xn) on tõkestatud, kui leidub selline arv M>0, et |Xn| arvu a u mbrusesse (a - , a + ), st rahuldavad v orratust |x - a| < .

Matemaatiline analüüs
10 allalaadimist
thumbnail
14
doc

Matemaatiline analüüs II Teooria

Olgu lõigul [T1, T2] antud m funktsiooni x1 = 1(t), x2 = 2(t), . . . , xm = m(t). Vaatleme nende funktsioonidevõrranditest moodustatud süsteemi x1 = 1(t) x2 = 2(t) .... xm = m(t) , t [T1, T2] . Antud süsteem määrab iga t [T1, T2] korral ühe kindla ruumi Rm punkti P =(x1, x2, . . . , xm). Üldiselt vastavad muutuja t erinevatele väärtustele erinevad ruumi punktid. Kui muutuja t jookseb läbi kogu lõigu [T1, T2], siis t-le vastav punkt kujundab ruumis Rm punktihulga, mida nimetatakse parameetriliseks jooneks. 2) Vektorid mitmemõõtmelises ruumis. Punkti kohavektor. Vektori suunaline sirge ja selle parameetrilised võrrandid. Vektorite skalaarkorrutis. Mitmemõõtmeline ruum kui eukleidiline ruum. Cauchy-Schwartzi võrratus. Teljed mitmemõõtmelises ruumis.

Matemaatiline analüüs 2
184 allalaadimist
thumbnail
9
docx

Matemaatiline analüüs II KT teooria

t. ta ei sõltu piirkonna D osapiirkondadeks si jaotamise viisist ega punkti Pi valikust piirkonnas si. Tähistame osapiirkondade si maksimaalset läbimõõtu sümboliga , s.t. Piirväärtust nim. funktsiooni z=f(x,y) kahekordseks integraaliks üle piirkonna D ja tähistatakse sümboliga Piirkonda D nim. integreerimispiirkonnaks. Kui f(x,y)0 piirkonnas D, siis kahekordne integraal tähendab geomeetriliselt niisugust kõversilindri ruumala, mis alt on piiratud xy- tasandi piirkonnaga D, ülalt funktsiooni z=f(x,y) graafikuks oleva pinnaga ja küljelt silinderpinnaga, mille moodustaja on paralleelne z-teljega ja juhtjooneks piirkonna D rajajoon. Kahekordse integraali omadusi: 1. Kahe funktsiooni summa kahekordne integraal on võrdse nende funktsioonide kahekordsete integraalide summaga: 2. Kui c on konstant, siis: 3

Matemaatiline analüüs 2
211 allalaadimist
thumbnail
7
docx

Matemaatiline analüüs 1 teooria

1. Mitme muutuja funktsiooni definitsioon. Mitme muutuja funktsiooni määramispiirkonna definitsioon (kahe ja kolme muutuja funktsiooni määramispiirkond). Erinevad piirkonnad, piirkonna rajajoon. Tõkestatud piirkond. Kui kahe teineteisest sõltumatu muutuva suuruse x ja y igale väärtuspaarile (x;y) mingisugusest nende muutumispiirkonnast D vastab suuruse z väärtus, siis öeldakse, et z on kahe sõltumatu muutuja x ja y funktsioon, mis on määratud piirkonnas D. Kahe muutuja funktsiooni z märgitakse kujul z=f(x,y). Argumentide x ja y väärtuspaaride (x;y) hulka, mille puhul funktsioon z=f(x,y) on määratud, nim. selle funktsiooni määramispiirkonnaks. Kui x ja y iga väärtuspaari kujutada xy-tasapinna punktina M(x;y), siis funktsiooni määramispiirkonda kujutab teatud punktide hulk tasapinnal. Ka seda punktide hulka nim. funktsiooni määramispiirkonnaks

Matemaatiline analüüs 1
83 allalaadimist
thumbnail
11
doc

Matemaatiline analüüs - konspekt II

32. Lokaalse ekstreemumi piisavad tingimused: tingimus I. Olgu x1 funktsiooni f kriitiline punkt. Kui läbides punkti x1 vasakult paremale funktsiooni tuletise märk muutub plussist miinuseks siis on funktsioonil selles punktis lokaalne maksimum. Kui aga läbides punkti x1 vasakult paremale funktsiooni tuletise märk muutub miinusest plussiks siis on funktsioonil selles punktis lokaalne miinimum. Kui funktsioonil eksisteerib teist järku tuletis siis saab lokaalsete ekstreemumite olemasolu kontrollida ka selle abil. Nimelt maksimumpunkti läbides vasakult paremale funktsiooni graafiku puutuja tõus väheneb. See tähendab et funktsiooni tuletis kahaneb. Funktsiooni tuletis kahaneb aga juhul kui teine tuletis on negatiivne. Seevastu miinimupunkti läbides puutuja tõus suureneb, seega tuletis kasvab. Tuletis kasvab aga juhul kui teine tuletis on positiivne. Järelikult kehtib järgmine väide: Lokaalse ekstreemumi piisav tingimus II

Matemaatiline analüüs
349 allalaadimist
thumbnail
13
doc

Matemaatiline analüüs I 1 kt teooria

Def.Trigonomeetrilised funktsioonid on funktsioonid kujul y=sinx,y=cosx,y=tanx ja y=cotx radiaanides antud argumendiga x. Määramispiirkonnad ja väärtuste hulgad on järgmised: 4. Def. Eeldame, et argument x on funktsiooni väärtuse f(x) kaudu üheselt määratud, st, et iga y Y leidub ainult üks x nii, et valitud y on selle x-I kujutiseks. Kui see on nii, siis öeldakse, et funktsioon f on üksühene. Üksühese funktsiooni korral on võrrand y=f(x) muutuja x suhtes üheselt lahenduv. Def. Üksühese funktsiooni y=f(x) pöördfunktsiooniks nimetatakse kujutist, mis seab igale f(x)-le funktsiooni f väärtuste hulgast vastavusse x-i. Pöördfunktsioonis funktsiooni argument ja sõltuv muutuja vahetavad oma kohad, st kui funktsiooni f argumendiks on x ja sõltuvaks muutujaks y, siis funktsiooni f pöördfunktsiooni argumendiks on y ja sõltuvaks muutujaks y. Samuti vahetuvad

Matemaatiline analüüs 2
103 allalaadimist
thumbnail
10
docx

Matemaatiline analüüs I 1. teooria KT

ühes reas (veerus) ja neil vastavad funktsiooni väärtused tabeli teises reas (veerus). On võimalik vaid siis, kui funktsiooni argumendil on lõplik arv väärtusi. Analüütiline esitusviis. Funktsioon esitatakse valemi kujul. Kui vaja, lisatakse ka määramispiirkonna kirjeldus. Graafiline esitusviis. Funktsioon esitatakse graafikuna tasandil ristkoordinaadistikus. Olgu antud funktsioon f, mille argument on x, sõltuv muutuja y ja määramispiirkond X. Kanname tasandile ristuvad x- ja y-teljed. Vaatleme selles teljestikus joont G, mis koosneb kõikvõimalikest punk- tidest P = (x,f(x)), kusjuures P esimene koordinaat x jookseb läbi kogu määramispiirkonna X. Seda joont nimetataksegi funtsiooni f graafikuks. Seega, lühidalt kirjutades on funktsiooni f graafiku definitsioon järgmine: G = {P = (x,f(x))||x X}.

Matemaatiline analüüs 1
110 allalaadimist
thumbnail
9
doc

Matemaatiline analüüs - konspekt I

Funktsiooni mõiste. Olgu antud 2 muutuvat suurust x ja y. Funktsiooniks (ehk üheseks funktsiooniks) nimetatakse kujutist mis seab suuruse x igale väärtusele tema muutumispiirkonnast vastavusse suuruse y ühe kindla väärtuse. Muutujat x nimetatakse seejuures sõltumatuks muutujaks ehk argumendiks ja muutujat y sõltuvaks muutujaks. Funktsioone tähistatakse tavaliselt tähtedega f; g; u; v; ; jne. Olgu antud funktsioon f mille argumendiks on x ja s~oltuvaks muutujaks y. Muutuja y väärtust milleks funktsioon f kujutab argumendi x nimetatakse funktsiooni f väärtuseks kohal x ja tähistatakse sümboliga f(x). Seega, me võime kirjutada seose y = f(x) ; (1.1) mis väljendab muutuja y "seotust" argumendiga x funktsiooni f kaudu. Mõnikord kasutatakse funktsiooni ja sõltuva muutuja tähistamiseks ühte ja sama sümbolit. Sellisel juhul seos (1.1) omab kuju y = y(x).

Matemaatiline analüüs
597 allalaadimist
thumbnail
13
doc

Matemaatiline analüüs I 1. kt teooria

Def.Trigonomeetrilised funktsioonid on funktsioonid kujul y=sinx,y=cosx,y=tanx ja y=cotx radiaanides antud argumendiga x. Määramispiirkonnad ja väärtuste hulgad on järgmised: 4. Def. Eeldame, et argument x on funktsiooni väärtuse f(x) kaudu üheselt määratud, st, et iga y Y leidub ainult üks x nii, et valitud y on selle x-I kujutiseks. Kui see on nii, siis öeldakse, et funktsioon f on üksühene. Üksühese funktsiooni korral on võrrand y=f(x) muutuja x suhtes üheselt lahenduv. Def. Üksühese funktsiooni y=f(x) pöördfunktsiooniks nimetatakse kujutist, mis seab igale f(x)-le funktsiooni f väärtuste hulgast vastavusse x-i. Pöördfunktsioonis funktsiooni argument ja sõltuv muutuja vahetavad oma kohad, st kui funktsiooni f argumendiks on x ja sõltuvaks muutujaks y, siis funktsiooni f pöördfunktsiooni argumendiks on y ja sõltuvaks muutujaks y. Samuti vahetuvad

Matemaatika analüüs I
297 allalaadimist
thumbnail
12
odt

Matemaatiline analüüs I 1. kollokvium

4)Kui funktsioonidel f(x) ja g(x) on punktis a sama piirväärtus b ning leidub punkti a δ-ümbrus, et iga 0 < |x − a| < δ korral kehtib võrratuste ahel f(x) ≤ h(x) ≤ g(x), siis funktsiooni h(x) piirväärtus punktis a on samuti b. 5)lim (1 + 1/x)x = e; lim (1+1/x)x = e; lim (1+x)1/x = e x→+∞ x→ - ∞ x→ 0 4.Jada tõkestatus. Monotoonsed jadad. Osajadad. Bolzano – Weierstrass teoreem. Jada tõkestatus - Jada{xn} nimetatakse tõkestatuks, kui leidub selline arv M > 0, et iga n ∈ N korral xn ∈ UM (0), st ∀n ∈ N(| xn | ≤ M). Osajadad - Iga jada, mis saadakse jadast mingi lõpliku või lõpmatu hulga jada elementide väljajätmisel nim. selle jada osajadaks. Bolzano – Weierstrass teoreem - Igast tõkestatud jadast saab eraldada koonduva osajada. Monotoonne jada - jada, mis on kogu ulatuses mittekasvav võimittekahanev. 5.Cauchy jadad ehk fundamentaaljadad

Matemaatiline analüüs 1
65 allalaadimist
thumbnail
2
docx

Matemaatiline analüüs teoreemid

f ( x) Et on pidev funktsioon, siis omandab ta iga väärtuse m ja M vahelt. Järelikult mingi µ = f ( ) korral ( a b ) on , s.t. b f (x )dx =f ()(b - a) a . 23. MUUTUVA ÜLEMISE RAJAGA INTEGRAAL (teoreem 5.3) Olgu määratud integraalis alumine raja fikseeritud ja ülemine raja muutuv. Siis muutub ka integraali väärtus, s.t. integraal on ülemise raja funktsioon. Tähistame muutuva raja x'ga ning integreerimismuutuja t'ga. Et see integraal on ülemise raja funktsioon, tähistame ta (x). Kui f(x) on pidev funktsioon ja , siis kehtib võrdus: =f(x)

Matemaatiline analüüs
161 allalaadimist
thumbnail
8
docx

Matemaatiline analüüs II teooria töö

4. · Üksühese funktsiooni mõiste. Olgu antud funktsioon y = f (x). Eeldame, et ka argument x funktsiooni v¨aärtuse f (x) kaudu üheselt määratud. See tähendab, et iga y korral hulgast Y leidub ainult üks x nii, et valitud y on selle xi kujutiseks. Kui see on nii, siis öeldakse, et funktsioon f on üksühene. Üksühese funktsiooni korral on võrrand y = f (x) muutuja x suhtes üheselt lahenduv. · Üksühese funktsiooni pöördfunktsioon. Üksühese funktsiooni y = f(x) pöördfunktsiooniks nimetatakse kujutist, mis seab igale f(x)le funktsiooni f väärtuste hulgast vastavusse xi. · Seosed funktsiooni ja pöördfunktsiooni vahel: o Olgu x = g(y) üksühese funktsiooni y = f(x) pöördfunktsioon. Siis funktsioonid f ja g kompenseerivad teineteist järgmises mõttes

Matemaatiline analüüs 2
96 allalaadimist
thumbnail
16
doc

Matemaatiline analüüs II, 1. kollokvium

Contents Contents...................................................................................................................... 1 4.Mitme muutuja funktsiooni piirväärtus. Pidevus........................................................ 5 7) Liitfunktsiooni tuletise ja osatuletise valemid. Uks neist tuletada.............................. 6 8) Defineerida funktsiooni tuletis etteantud suunas. Tuletada suunatuletise valem funktsiooni osatuletiste kaudu. Gradient. Telgedesuunalised tuletised. Suunatuletise tõlgendus..................................................................................................................... 9 10. Olgu mitmemuutuja funktsioon u = f (x) antud ilmutamata kujul võrrandiga F(x,u)= 0. Tuletada valem funktsiooni f osatuletiste jaoks funktsiooni F osatuletiste kaudu.

Matemaatiline analüüs 2
853 allalaadimist
thumbnail
20
docx

Matemaatiline analüüs II kontrolltöö

2.2. Iga korral kehtib võrratus a.3. Funktsiooni lokaalseid maksimume ja miinimume nimetatakse selle funktsiooni lokaalseteks ekstreemumiteks. b. Sõnastada ja tõestada Fermat' lemma Sõnastus: Kui funktsioonil f on punktis x lokaalne ekstreemum ja funktsioon on diferentseeruv selles punktis, siis f'(x)=0. Tõestus: b.1. b.2. 25. Sõnastada ja tõestada Rolle'i teoreem. Rolle'i teoreemi geomeetriline sisu. Sõnastada ja tõestada Cauchy teoreem. Sõnastada ja tõestada Lagrange'i teoreem. Lagrange'i teoreemi geomeetriline sisu. a. Sõnastada ja tõestada Rolle'i teoreem Sõnastus: Kui funktsioon f on lõigul [a,b] pidev, vahemikus (a,b) diferentseeruv ja rahuldab tingimust siis leidub vahemikus (a,b) vähemaly üks punkt c nii, et .

Matemaatiline analüüs
122 allalaadimist
thumbnail
51
pdf

Matemaatilise analüüsi konspekt

Teoreem 3 Olgu funktsioon y =f(x) pidev lõigul [a, b] Siis mistahes väärtuse jaoks, mis asub funktsiooni vähim ja suurima väärtuse vahel m k M leidub vähemalt üks selline punkt x3 [a, b] , et f(x3)=k Järeldus: Kui funktsioon on pidev lõigul [a, b] ja f(x1)>0 ja f(x2)<0, x1 , x 2 [a, b] . Siis leidub niisugune x3 ]x1 , x 2 [ , et f ( x 3 ) = 0 © 2001 - Ivari Horm ([email protected]), Toomas Sarv 9 Funktsiooni tuletis ja selle geomeetriline tähendus. Puutuja ja normaali võrrand. Olgu antud funktsioon y = f (x) Anname argumendile x muudu x Siis funktsioon saab vastava muudu y = f ( x + x ) - f (x) Definitsioon 1 Funktsiooni y = f ( x) tuletiseks nimetatakse piirväärtust y f ( x + x) - f ( x) y ' = lim = lim x 0 x x 0 x y

Matemaatiline analüüs
11 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun