Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Matemaatiline analüüs II KT teooria (0)

5 VÄGA HEA
Punktid

Lõik failist

Vasakule Paremale
Matemaatiline analüüs II KT teooria #1 Matemaatiline analüüs II KT teooria #2 Matemaatiline analüüs II KT teooria #3 Matemaatiline analüüs II KT teooria #4 Matemaatiline analüüs II KT teooria #5 Matemaatiline analüüs II KT teooria #6 Matemaatiline analüüs II KT teooria #7 Matemaatiline analüüs II KT teooria #8 Matemaatiline analüüs II KT teooria #9
Punktid 5 punkti Autor soovib selle materjali allalaadimise eest saada 5 punkti.
Leheküljed ~ 9 lehte Lehekülgede arv dokumendis
Aeg2013-12-14 Kuupäev, millal dokument üles laeti
Allalaadimisi 211 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor kaarel7 Õppematerjali autor

Sarnased õppematerjalid

thumbnail
10
doc

Matemaatiline analüüs II

1. Kahemuutuja funktsiooni integraalsumma mõiste ja geomeetriline sisu. · Olgu D kinnine tõkestatud piirkond ruumis R2. Olgu z = (x,y) piirkonnas D määratud pidev funktsioon. Jaotame piirkonna D n tükiks S1,S2,...,Sn.Tähistagu Si samaaegselt nii i-ndat tükki kui ka i-nda tüki pindala.Valime igalt tükilt ühe punkti P ja moodustame järgmise summa: Vn= (P1) S1 + (P2) S2+...+ (Pn) Sn Seda summat Vn nim funktsiooni integraalsummaks piirkonnas D · Olgu (x,y) 0. siis saab integraalsummas olevat korrutist (P i) Si tõlgendada kui silindri ruumala, mille põhi on S i ja kõrgus (Pi) Selline silinder tähistatakse Zi-ga. IntegraalsummaVn on järelikult silindrite ühendi Z=Z1 U Z2 U...U Zn ruumala. Silindrite ühend Z on treppkeha, mille ülemine pind on tükiti tasapinnalineomades hüppeid erinevate kõrgustega naaber silindrite liitekohtades. 2. Kahekordse integraali mõiste j

Matemaatiline analüüs
thumbnail
14
pdf

Matemaatiline analüüs II

Kolmekordse int-ga: Xdydz + Ydzdx + Zdxdy = ( X x + Y y + Z z )dxdydz - Gauss-Ostrogradri D valem. Kui rajajoon, siis seos joonintegraaliga: Stokasi valem: (Z y - Yz )dydz + ( X z - Z x )dxdz + (Yx - X y )dxdy = Xdx + Ydy + Zdz +L +L ­ sõltub int pinna poolest. Kui xy-tasandil, siis z=0 ja Stokasi valem taandub Greeni valemiks. Arvridade teooria põhimõisteid Vaateleme reaalarvudest mood lõpmatut jada u1+ u2+ ... +un+... = u n nim lõpmatuks n =1 reaalarvuks, liidetavaid aga nim rea liikmeteks, liidetavat un nim rea üldliikmeks. Rea esimese n n

Matemaatiline analüüs 2
thumbnail
16
doc

Kordamisküsimused - vastused

MATEMAATILINE ANALÜÜS II Kood YMM0012 3,5 AP KORDAMISKÜSIMUSED 1. Mitme muutujaga funktsiooni mõiste m-muutuja funktsiooniks nimetatakse kujutist, mis seab suuruse P igale väärtusele tema muutumispiirkonnast D vastavusse suuruse z ühe kindla väärtuse Mitmemuutuja funktsioon graafik Funktsiooni z=f(x1,x2,...,xm), määramispiirkonnaga D, graafikuks nimetatakse järgmist ruumi Rm+1 alamhulka ={(x1,x2,...,xm,f(x1,x2,...,xm))||P(x1,x2,...,xm)D} 2. Nivoojooned ja pinnad Kahemuutuja funktsiooni z=f(x,y) nivoojooneks nimetatakse joont, mille moodustavad piirkonna D punktid (x,y) mille korral f(x,y)=C, kus C on etteantud konstant Skalaarvälja f ehk funktsiooni f nivoopinnaks nimetatakse pinda, mis koosneb piirkonna D punktidest (x,y,z) mille korral f(x,y,z)=C, kus C on etteantud konstant. 3. Mitme muutuja funktsiooni piirväärtus ja pidevus Mitmemuutuja funktsiooni piirväärtus m-muutuja funktsioonil f on piirväärtus b punktis A kui suvalises piirprotsessis PA, mis rahulda

Matemaatiline analüüs 2
thumbnail
20
docx

Matemaatiline analüüs II. Eksami kordamisküsimuste vastused

1. Kahje muutuja funktsioonid(definitsioon, määramis- ja muutumispiirkonna definitsioon ja tähistused, näited, esitusviisid, ilmutamata kujul esituse definitsioon, graafik ja graafiku näiteid)  DEF: Kahe muutuja funktsioon f on kujutus, mis seab igale arvupaarile (x,y) ∈ D vastavusse ühe reaalarvu z= f ( x , y )  Nende punktide (x,y) hulka D, mille puhul funktsiooni väärtus on lõplik, nimetatakse selle funktsiooni määramispiirkonnaks.  Funktsiooni väärtuste z hulka Z nimetatakse funktsiooni muutumispiirkonnaks.  Esitusviis : z=f (x , y ) z- sõltuv muutja, (x,y)- sõltumatud muutujad  Näide:  Funktsioon võib olla antud ilmutatud kujul z= f (x1 , x2 , x3 , … x n) (z=x2+y2-5) või ilmutamata kujul F ( x 1 , x 2 , x 3 , … x n ;

Matemaatiline analüüs 2
thumbnail
20
pdf

Matemaatilise analüüsi kollokvium nr.3

1.Kordse integraali mõiste. Kahemuutuja funktsiooni integraalsumma ja kahekordse integraali definitsioonid. Kahekordse integraali geomeetriline sisu. Kahekordse integraali omadused. Kui eksisteerib , mis ei sõltu osapiirkondadeks Dj jaotamise viisist ega punktide Pj ϵ Dj valikust, siis seda piirväärtust nimetatakse funktsiooni f(x,y) kahekordseks integraaliks üle piirkonna D ja tähistatakse Olgu D kinnine tõkestatud piirkond ruumis R2. Olgu z = ƒ (x,y) piirkonnas D määratud pidev funktsioon. Jaotame piirkonna D n tükiks ∆S1,∆S2,…,∆Sn.Tähistagu ∆Si samaaegselt nii i- ndat tükki kui ka i-nda tüki pindala.Valime igalt tükilt ühe punkti P ja moodustame järgmise summa: Vn= ƒ (P1) ∆S1 + ƒ (P2) ∆S2+…+ ƒ (Pn) ∆Sn Seda summat Vn nim funktsiooni ƒ integraalsummaks piirkonnas D Kahekordse integraali geomeetriline sisu :  Olgu ƒ(x,y)≥0. Vaatleme keha Q, mis on ülalt piiratud pinnaga z = (x,y) alt

Matemaatiline analüüs 2
thumbnail
32
pdf

Matemaatiline analüüs II konspekt - MITME MUUTUJA FUNKTSIOONID

Kordamine eksamiks aines matemaatiline analüüs II (2004/2005 õa kevad) §1. MITME MUUTUJA FUNKTSIOONID 1. Ruum R m , hulgad selles ruumis Def. Kõigi m reaalarvust koosnevate järjestatud süsteemide P = ( x1 ,..., x m ) hulka nimetatakse m-mõõtmeliseks ruumiks. Def. Kui m-mõõtmelises ruumis defineeritakse süsteemide P = ( x1 ,..., x m ) ja Q = ( y1 ,..., y m ) m

Matemaatiline analüüs ii
thumbnail
4
doc

Spikker

f ( P)dS = f ( A) dS 1. Kahemuutuja funktsiooni integraalsumma mõiste ja f * (P)dS = f * (P)dS + f * (P)dS = f (P)dS m d geomeetriline sisu Vn = f ( P)dS = lim Vn = lim f ( pi , y)dy xi + lim = Kahemõõtmelises hulgas DR2 määratud funktsiooni f(x,y) integraalsummaks antud piirkonnas D nimetatakse summat D D 4. Kahekordse integraali arvutamine ristkoordinaatides

Matemaatiline analüüs
thumbnail
4
pdf

Matemaatiline analüüs II, II teooriaküsimused 2013

Kordamisküsimused matemaatilise analüüsi (II) II osaeksamiks 2013 1. Kahekordne integraal (integraalsumma, kahekordse integraali definitsioon, kahekordse integraali omadused (vastavad teoreemid tõestuseta)). n Moodustame summa: Vn = f ( P1 )s1 + f ( P2 )s 2 + ... + f ( Pn )s n = f ( Pi )s i i =1 Seda summat nimetatakse funktsiooni f(x,y) integraalsummaks üle piirkonna D. Teoreem 1. Kui funktsioon f(x,y) on kinnises piirkonnas D pidev, siis integraalsummade jadal leidub osapiirkondade si maksimaalse läbimõõdu nullile lähenemisel ja n lõpmatul kasvamisel piirväärtus, mis on üks ja sama iga jada puhul, s.t. ta ei sõltu piirkonna D osapiirkondadeks si jaotamise viisist ega punkti Pi valikust piirkoonas si. Seda piirväärtust nimetatakse funktsioonif (x,y) kahekordseks integraaliks üle

Matemaatiline analüüs ii




Meedia

Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun