Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse Registreeri konto

Matemaatiline analüüs 2 kollokvium 2 (0)

5 VÄGA HEA
Punktid
Vasakule Paremale
Matemaatiline analüüs 2 kollokvium 2 #1 Matemaatiline analüüs 2 kollokvium 2 #2 Matemaatiline analüüs 2 kollokvium 2 #3 Matemaatiline analüüs 2 kollokvium 2 #4 Matemaatiline analüüs 2 kollokvium 2 #5 Matemaatiline analüüs 2 kollokvium 2 #6 Matemaatiline analüüs 2 kollokvium 2 #7 Matemaatiline analüüs 2 kollokvium 2 #8 Matemaatiline analüüs 2 kollokvium 2 #9 Matemaatiline analüüs 2 kollokvium 2 #10 Matemaatiline analüüs 2 kollokvium 2 #11 Matemaatiline analüüs 2 kollokvium 2 #12 Matemaatiline analüüs 2 kollokvium 2 #13 Matemaatiline analüüs 2 kollokvium 2 #14 Matemaatiline analüüs 2 kollokvium 2 #15 Matemaatiline analüüs 2 kollokvium 2 #16
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 16 lehte Lehekülgede arv dokumendis
Aeg2012-10-29 Kuupäev, millal dokument üles laeti
Allalaadimisi 219 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor katrinkih Õppematerjali autor

Märksõnad

Sarnased õppematerjalid

thumbnail
16
doc

Matemaatiline analüüs 2, kollokvium 2

....................................................................................... 13 14. Fourier' teisendus. Fourier' siinus- ja koosinusteisendus................................................. 14 15. Fourier' teisenduse omadusi. Üks neist tõestada............................................................ 15 16. Diskreetne Fourier' teisendus (DFT) ja koosinusteisendus (DCT). Rakendusi................15 1. Arvrea mõiste. Arvrea osasumma ja koonduvus. Näiteid koonduvate ja hajuvate arvridade kohta. Geomeetrilise rea osasumma ja summa valemite tuletamine. Avaldist , kus on reaalarvud, nimetatakse arvreaks. Selle rea esimese liikme summat nimetatakse selle rea -ndaks osasummaks, st. Eeltoodud rida nimetatakse koonduvaks, kui selle rea osasummade jada { } on koonduv, st , kusjuures suurust S nimetatakse selle rea summaks. Kui ei eksisteeri

Matemaatiline analüüs 2
thumbnail
26
pdf

Matemaatilise analüüsi kollokvium nr.1

1. Arvrea mõiste. Arvrea osasumma ja koonduvus. Näiteid koonduvate ja hajuvate arvridade kohta. Avaldist , kus on reaalarvud, nimetatakse arvreaks. Selle rea esimese liikme summat nimetatakse selle rea -ndaks osasummaks, st. Eeltoodud rida nimetatakse koonduvaks, kui selle rea osasummade jada { } on koonduv, st , kusjuures suurust S nimetatakse selle rea summaks. Kui ei eksisteeri lõplikku piirväärtust siis nimetatakse seda rida hajuvaks. Näide 1. Uurime rea koonduvust. Et siis , seega see rida on hajuv. Näide 2. Uurime rea koonduvust. Tegu on positiivse arvreaga, sest

Matemaatiline analüüs 2
thumbnail
4
pdf

Matemaatiline analüüs II 1. kollokviumi spikker

1 1 korral ak≠0(k>n) leidub lõplik või lõpmatu piirväärtus lim 𝑘 , siis selle rea koonduvusraadius avaldub kujul 𝑅 = lim 𝑘 . 14. Fourier’ teisenduse omadusi. Fourier’ teisenduse rakendusi.

Matemaatiline analüüs 2
thumbnail
5
doc

Matemaatilise analüüsi 2.kollokviumi

Mitmemuutuja funktsiooni mõiste. Mitmemuutuja funktsiooni piirväärtuse definitsioon. Pideva mitmemuutuja Kui funktsiooni z=f(x,y) on diferentseeruv kohal (x,y), siis funktsioon f on pidev sellel kohal. funktsiooni definitsioon. Kahemuutuja funktsiooni pidevuse geomeetriline sisu. Funktsioon z=f(x,y) on diferentseeruv kohal (x,y) siis, kui funktsioonil z=f(x,y) on pidevad osatuletised fx ja fy kohal (x,y). Kui hulga Rn igale punktile P(x1, . . . , xn) on vastavusse seatud muutuja u R kindel väärtus, siis öeldakse, et hulgal on Kui funktsiooni f(x,y) osatuletised fx(x,y) ja fy(x,y) on diferentseeruvad kohal (x,y), siis fxy = fyx kohal (x,y). defineeritud n-muutuja (skalaarväärtusega) funktsioon

Matemaatiline analüüs 2
thumbnail
8
doc

Matemaatiline analüüs 2, kollokvium 3

.............................6 9.Eralduvate muutujatega diferentsiaalvõrrand.......................................................................... 7 10.Lineaarne diferentsiaalvõrrand...............................................................................................7 11.Lineaarsed konstantsete kordajatega diferentsiaalvõrrandid................................................ 7 1.Kordse integraali mõiste. Kahekordne intgeraal. Kahekordse integraali omadused. Kui eksisteerib , mis ei sõltu osapiirkondadeks Dj jaotamise viisist ega punktide Pj Dj valikust, siis seda piirväärtust nimetatakse funktsiooni f(x,y) kahekordseks integraaliks üle piirkonna D ja tähistatakse Kahekordse integraali omadusi 1. Kui funktsioon f(x,y) on pidev piirkonnas D, siis ta on ka integreeruv piirkonnas D 2. Piirkonnas D konstantne funktsioon 1 on selles piirkonnas integreeruv, kusjuures 3. Kui eksisteerib integraal ja c R, siis eksisteerib ka integraal , kusjuures

Matemaatiline analüüs 2
thumbnail
8
pdf

Matemaatiline analüüs II 2. kollokviumi spikker

1. Mitmemuutuja funktsiooni lokaalsete ekstreemumite mõisted. Statsionaarne punkt. Kriitiline punkt. piirkonna D rajajoon. Eeldame, et piirkonnas D on täidetud tingimus f(x,y)>=g(x,y). Kahekordse integraali 𝑥 = 𝜌 𝑐𝑜𝑠𝜑 Mitmemuutuja funktsiooni lokaalse ekstreemumi tarvilik tingimus. Definitsioon 1. Öeldakse, et kahe omaduse tõttu ∬𝐷[𝑓(𝑥, 𝑦) − 𝑔(𝑥, 𝑦)]𝑑𝑥𝑑𝑦 = ∬𝐷 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 − ∬𝐷 𝑔(𝑥, 𝑦)𝑑𝑥𝑑𝑦. Mõlemad kahekordsed 𝑦 = 𝜌 𝑠𝑖𝑛𝜑

Matemaatiline analüüs 2
thumbnail
12
odt

Matemaatiline analüüs I 1. kollokvium

1. Norm ja kaugus (meetrika). Ümbrused. ε-ümbruse definitsioon. Reaalarvu ühepoolsed ümbrused. Lõpmatuse ümbrused. Kauguseks ruumis V nimetatakse reeglit, mis igale kahele selle ruumi elemendile u,v ∈V seab vastavusse skalaari d(u,v) ∈R, kusjuures on täidetud järgmised tingimused: 1 ∀u,v∈V d(u,v) ≥ 0; d(u,v) = 0⇔v = u 2 ∀u,v∈V d(u,v) = d(v,u) 3 ∀u,v,w∈V d(u,v) ≤ d(u,w) +d(w,v) Normiks vektorruumis V nimetatakse reeglit, mis igale vektorile u ∈ V seab vastavusse skalaari ||u|| ∈ R, kusjuures on täidetud järgmised tingimused: 1)∀u ∈ V ||u|| ≥ 0; ||u|| = 0 ⇔ u = 0, 2)∀u ∈ V, α ∈ R ||αu|| = |α| ||u||, 3)∀u, v ∈ V ||u + v|| ≤ ||u|| + ||v|| Punkti ümbrusest võib mõelda kui niisugusest seda punkti sisaldavast hulgast, kus ükskõik mis suunas saab

Matemaatiline analüüs 1
thumbnail
10
docx

Matemaatiline analüüs I 1. kollokvium

1* Normi ka kauguse Def. 1o puudu ||f||∞ = sup|f(x)|(x∈X) 5*(Jada definitsioon. Koonduvad jadad , jada piirväärtus. Normiks vektorruumis V nimetatakse reeglit, mis igale vektorile u ∈V Koonduva jada piirväärtuse omadused + tõestus) piirväärtuse ühesuse tõestus.jada Jadaks nimetatakse funktsiooni, mille määramispiirkonnaks on naturaalarvude hulk N seab vastavusse skalaari ¿∨u∨¿ ∈ R , kusjuures on täidetud

Matemaatiline analüüs 1



Lisainfo

Tambergi teise kollokviumi küsimuste vastused.

Meedia

Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun