Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

Matemaatiline analüüs 1 - sarnased materjalid

teoreem, tuletis, diferentsiaal, diferentseeruv, ekstreemum, algfunktsioon, võrratus, asümptoodi, avaldis, lokaalne, nõgus, kumer, avaldise, graafik, vaatleme, põhjendus, jääva, polünoom, puutuja, käänupunkt, nullile, integraalsumma, ümbrus, ositi, piirväärtus, koordinaat, valemist, lagrange, algfunktsioonid, muutuja, konstantne, teljega
thumbnail
18
docx

Matemaatiline analüüs KT2 vastused

23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. Funktsiooni muudu peaosa ja jääkliige. Olgu antud funktsioon, mis on diferentseeruv punktis a. Eeldame, et f(a)0 kasutades mõisteid: x = x - a - argumendi muut kohal a y = f(x) - f(a) - funktsiooni muut kohal a . Näitasime, et Seega kui tähistame ja f'(a) vahe järgmiselt : Kehtib võrdus Püüame avaldada funktsiooni muutu y argumendi muudu x kaudu. Selleks

Matemaatiline analüüs I
120 allalaadimist
thumbnail
36
pdf

Matemaatiline analüüs

Matemaatiline analüüs 23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu ∆x suhtes, kui ∆x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. Funktsiooni muudu esitus: ∆y = f’(a)∆x + β , kus β = r(∆x)∆x Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu ∆ x suhtes, kui ∆ x läheneb nullile? (tõestada!). funktsiooni muut ∆y koosneb kahest liidetavast, millest esimene on diferentsiaal dy = f’(a)∆x ja teine on β. Mõlemad liidetavad on lõpmatult kahanevad protsessis ∆x → 0. Võrdleme neid suurusi ∆x suhtes. Esiteks, eelduse f’(a)  0 põhjal saame lim dy ∆x= lim f’(a)/∆x* ∆x= lim f’(a) = f(a)  0. ∆x→0 ∆x→0 ∆x→0 Teiseks kehtib

Matemaatiline analüüs 1
13 allalaadimist
thumbnail
8
docx

Matemaatiline analüüs KT2

20. Esitada funktsiooni muut diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? Tõestada ei ole vaja. Funktsiooni muudu peaosa ja jääkliige. Olgu antud funktsioon, mis on diferentseeruv punktis a. Eeldame, et f (a)0. Valemist näeme, et funktsiooni muut y koosneb kahest liidetavast, millest esimene on diferentsiaal dy = f(a)x ja teine on . Mõlemad liidetavad on lõpmatult kahanevad protsessis x 0. Näeme, et esimene liidetav, so diferentsiaal dy on sama järku lõpmatult kahanev suurus kui x ja teine liidetav on kõrgemat järku lõpmatult kahanev suurus x suhtes. Järelikult väikese x korral hakkab diferentsiaal funktsiooni muudu avaldises domineerima. Seetõttu võime lugeda diferentsiaali dy funktsiooni muudu peaosaks. Jääkliikme võib väikese x korral funktsiooni muudu avaldises ära jätta

Matemaatiline analüüs
231 allalaadimist
thumbnail
15
docx

Matemaatika analüüsi II Kontrolltöö

Matemaatilise analüüsi II Kontrolltöö 1. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. a. Teades, et ­argumendi muut kohal a -funktsiooni muut kohal a a.i. Nii me näitasime, et a.ii. Tähistades ja vahe järgmiselt a.iii. Kehtib võrratus: a.iv. Et avaldada väärtust kaudu peame kõigepealt avaldama suhte: a.v. Korrutades saadud avaldist saame: kus a.vi. Nüüd näemegi, et koosneb kahest liidetavast, esimeseks dy= ja teine on , mis kahanevad piirprotsessis a.vii. Võrdleme neid suuruseid suhtes: a.viii. Lisaks kehtib veel: a.ix

Matemaatiline analüüs 2
99 allalaadimist
thumbnail
21
docx

Matemaatiline analüüs 1, teine teooriatöö kordamisküsimused

23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana y ' =f ( a ) +r ( x ) x Korrutame saadud avaldise x-ga ja saame y=f ' ( a ) x+ , kus =r ( x ) x Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (Tõestada) ' lim f ( a ) x dy lim r ( x ) x =¿ x o = lim f ' ( a )=f ' ( a ) 0 x x x o lim = x o = lim r ( x ) =0 lim ¿ x o x x x o x o

Matemaatika
9 allalaadimist
thumbnail
16
docx

Matemaatiline analüüs 2 KT

KT 2, MAT. ANALÜÜS 18. Esitada funktsiooni muut diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu ∆x suhtes, kui ∆x läheneb nullile? Tõestada ei ole vaja.  ∆y = f’(a)∆x + β  Diferentsiaal ja jääkliige on lõpmatult kahanevad protsessis ∆x → 0. 19. Funktsiooni lokaalsete ekstreemumite definitsioonid. Sõnastada Fermat’ lemma (tõestust ei küsi). Öeldakse, et funktsioonil f on punktis x1 lokaalne maksimum, kui 1. funktsioon f on määratud punkti x1 mingis ümbruses (x1 − ɛ, x1 + ɛ); 2. iga x ∈ (x1 − ɛ, x1 + ɛ) korral kehtib võrratus f(x) ≤ f(x1).

Matemaatika
14 allalaadimist
thumbnail
37
docx

Matemaatiline analüüs l.

võrdus f(-x) = f(x). Funktsiooni f nimetatakse paarituks funktsiooniks, kui iga x X korral kehtib võrdus f(-x) = -f(x). Perioodilised funktsioonid. Funktsiooni f nimetatakse perioodiliseks, kui leidub konstant C > 0 nii, et iga x X korral kehtib võrdus f(x + C) = f(x). Väikseimat sellist konstanti C nimetatakse funktsiooni f perioodiks. Kasvavad ja kahanevad funktsioonid. Olgu D funktsiooni f määramispiirkonna alamhulk. Valime hulgast D kaks suvalist arvu x1 ja x2 nii, et kehtib võrratus x1 < x2. Kui funktsiooni f rakendamisel argumentidele x1 ja x2 võrratuse märk ei muutu, st f(x1) < f(x2), siis on f kasvav hulgas D. Kui aga funktsiooni f rakendamisel argumentidele x1 ja x2 võrratuse märk muutub vastupidiseks, st f(x1) > f(x2), siis on f kahanev hulgas D. Kasvamispiirkonnas funktsiooni graafik tõuseb, kahanemispiirkonnas aga langeb. Astmefunktsioon on funktsioon järgmisel kujul y = xa, kus a on nullist erinev konstantne astendaja. Selle

Matemaatiline analüüs
484 allalaadimist
thumbnail
6
docx

Vähendatud programmi teooria 2

Matemaatiline analüüs I (Vähendatud programmi teooria vastused) Lokaalse ekstreemumi mõiste. Öeldakse, et funktsioonil f on punktis x1 lokaalne maksimum, kui 1. funktsioon f on määratud punkti x1 mingis ümbruses (x1 - , x1 + ); 2. iga x (x1 - , x1 + ) korral kehtib võrratus f(x) f(x1). Öeldakse, et funktsioonil f on punktis x1 lokaalne miinimum, kui 1. funktsioon f on määratud punkti x1 mingis ¨umbruses (x1 - , x1 + ); 2. iga x (x1 - , x1 + ) korral kehtib v~orratus f(x) f(x1). Funktsiooni lokaalseid maksimume ja miinimume nimetatakse selle funktsiooni lokaalseteks ekstreemumiteks. Fermat' lemma. Kui funktsioonil f on punktis x1 lokaalne ekstreemum ja funktsioon on diferentseeruv selles punktis, siis f(x1) = 0. Rolle'i teoreem. Kui funktsioon f on lõigul [a, b] pidev, vahemikus (a, b)

Matemaatiline analüüs
131 allalaadimist
thumbnail
20
docx

Matemaatiline analüüs II kontrolltöö

Matemaatiline analüüs II kontrolltöö Punktid 23-45 23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile?(Tõestada) Loetleda diferentsiaali omadused. a. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana b. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile?(Tõestada) c. Loetleda diferentsiaali omadused c.1. c.2. c.3. c.4. c.5. 24. Funktsiooni lokaalsete ekstreemumite definitsioonid.Sõnastada ja tõestada Fermat' lemma. a. Funktsiooni lokaalsete ekstreemumite definitsioonid a.1

Matemaatiline analüüs
122 allalaadimist
thumbnail
10
docx

Kordamisküsimusi 3. teema kohta - Teooriatöö II

Kordamisküsimusi 3. teema kohta 1. Defineerida funktsiooni tuletis. Mis on diferentseeruv funktsioon ja diferentseerimine? Funktsiooni f tuletiseks punktis a nimetatakse järgmist suurust: f ( x )−f (a) f ' ( a )=lim x→ a x−a Kui funktsioon f omab punktis a lõplikku tuletist, siis öeldakse et ta on selles punktis diferentseeruv. Tuletise arvutamist nimetatakse diferentseerimiseks. 2. Esitada tuletise valem funktsiooni muudu ja argumendi muudu kaudu.

Matemaatika analüüs i
5 allalaadimist
thumbnail
6
docx

Mat. Analüüs I ; teooria II osa

Mat teooria II 1. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? Loetleda diferentsiaali omadused. 2. Olgu antud funktsioon, mis diferentseerub punktis a ja eeldame, et Teades, et Nii me näitasime, et Tähistades ja vahe järgmiselt Kehtib võrratus: Et avaldada väärtust kaudu peame kõigepealt avaldama suhte: Korrutades saadud avaldist saame: kus Nüüd näemegi, et koosneb kahest liidetavast, mis kahanevad piirprotsessis Võrdleme neid suuruseid suhtes: Lisaks kehtib veel: · Diferentsiaali omadused: 1. 2. 3. 4. 5. 3. Funktsiooni lokaalsete ekstreemumite definitsioonid. Sõnastada Fermat' lemma. · Funktsiooni lokaalne maksimum ­ Funktsioonil on punktis lokaalne maksimum, kui:

Matemaatiline analüüs I
17 allalaadimist
thumbnail
8
docx

Matemaatiline analüüs I 2. teooria KT vastused

TÕESTUSED, TULETUSKÄIGUD, PÕHJENDUSED!!! 23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana y = f'(a)x + , kus = r(x)x Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). funktsiooni muut y koosneb kahest liidetavast, millest esimene on diferentsiaal dy = f'(a)x ja teine on . M~olemad liidetavad on l~opmatult kahanevad protsessis x 0. V~ordleme neid suurusi x suhtes. Esiteks, eelduse f'(a) 0 p~ohjal saame lim dy x= lim f'(a)/x* x= lim f'(a) = f(a) 0. x0 x0 x0 Teiseks kehtib lim / x = lim r(x)x /x = lim r(x) = 0. x0 x0 x0 N¨aeme, et esimene liidetav, so diferentsiaal dy on sama j¨arku l~opmatult kahanev suurus kui

Matemaatika
46 allalaadimist
thumbnail
4
doc

Matemaatiline analüüs - teooria spikker

Moodustame integraalsumma katkevuspunktid. Teoreemid lõigul pideva funktsiooni Definitsioon Funktsiooni y=f(x) määratud integraaliks lõigul kohta. [a,b] nimetatakse piirväärtust 6. Funktsiooni tuletis ja selle geomeetriline tähendus. Puutuja ja normaali võrrand. x/2=arctan t ; x=2arctan t ; dx=2/1+t 2dt 7. Teoreem diferentseeruva funktsiooni pidevusest 2

Matemaatiline analüüs
973 allalaadimist
thumbnail
23
docx

MATEMAATILINE ANALÜÜS TÖÖ VASTUSED

· Elementaarfunktsioonid ­ funktsioonid mis saadakse põhielementaarfunktsioonidest lõpliku arvu aritmeetiliste tehete ja liitfunktsioonide moodustamise tulemusena. Põhilised elementaarfunktsioonid on nt: jne. · Polünoomfunktsioon ­ n astme polünoom on defineeritud avaldisega · Ratsionaalfunktsioon - on kahe polünoomi jagatis. 6. · Ilmutatud funktsioon ­ Funktsiooni ilmutatud kujuks on võrrad mille vasakul pool on y ja paremal pool avaldis, mis võib sisaldada muutujat x ,kuid mitte y. · Ilmutamata funktsioon ­ Funktsiooni ilmutamata kujuks on võrrad, mis sisaldab x ja y läbisegi · Parameetrilisel kujul antud joon ­ Olgu antud lõigul kaks funktsiooni ja . Kirjutame nad üles süsteemina: Süsteem saab iga korral ühe kindla arvupaari, ehk tasandil punkti ristkordinaatidega . Üldiselt vastavad muutujale t ka erinevad tasandi punktid, kui muutuja t jookseb läbi kogu

Matemaatika analüüs I
104 allalaadimist
thumbnail
11
doc

Matemaatiline analüüs - konspekt II

32. Lokaalse ekstreemumi piisavad tingimused: tingimus I. Olgu x1 funktsiooni f kriitiline punkt. Kui läbides punkti x1 vasakult paremale funktsiooni tuletise märk muutub plussist miinuseks siis on funktsioonil selles punktis lokaalne maksimum. Kui aga läbides punkti x1 vasakult paremale funktsiooni tuletise märk muutub miinusest plussiks siis on funktsioonil selles punktis lokaalne miinimum. Kui funktsioonil eksisteerib teist järku tuletis siis saab lokaalsete ekstreemumite olemasolu kontrollida ka selle abil. Nimelt maksimumpunkti läbides vasakult paremale funktsiooni graafiku puutuja tõus väheneb. See tähendab et funktsiooni tuletis kahaneb. Funktsiooni tuletis kahaneb aga juhul kui teine tuletis on negatiivne. Seevastu miinimupunkti läbides puutuja tõus suureneb, seega tuletis kasvab. Tuletis kasvab aga juhul kui teine tuletis on positiivne. Järelikult kehtib järgmine väide: Lokaalse ekstreemumi piisav tingimus II

Matemaatiline analüüs
350 allalaadimist
thumbnail
16
docx

J. Kurvitsa teooria vastused

1. Kollokvium 1. Hulga mõiste. Järjestatud hulk. Tehted hulkadega. Arvuhulgad. Teoreem. Ei leidu ratsionaalarvu, mille ruut on 2 (tõestada). Tõkestatud hulgad (näide). Tõkestamata hulgad (näide). Hulk koosneb elementidest, kusjuures elemendid ei kordu ja nende järjestus ei ole kindlaks määratud. Järjestatud hulk koosneb samuti elementidest, kuid selles hulgas on iga kahe elemendi kohta võimalik öelda, kumb neist on eelnev, kumb järgnev. Tehted hulkadega: * Hulkade A ja B ühendiks ehk summaks nimetatakse hulka, mille moodustavad kõik kas

Matemaatiline analüüs
195 allalaadimist
thumbnail
51
pdf

Matemaatilise analüüsi konspekt

>0, 1() >0, et 0< x-x0< f(x)-a< >0, 2() >0, et 0< x-x0< g(x)-a< Olgu = min( 1 , 2 ) , siis 0< x-x0< f(x)-a< , g(x)-a< f(x)-a< - < f(x)-a < a- < f(x) < a+ a- < g(x) < a+ Võrratusest (5.1) järeldub, et a- < g(x) h(x) g(x) < a+ Seega a- < h(x) < a+ - < h(x)-a < h(x)-a< Järelikult >0, () >0, et 0< x-x0< h(x)-a< , mis tähendabki, et lim h( x) = a x x0 m.o.t.t. Teoreem 4 Olgu punkti x0 teatud ümbruses kehtiv võrratus f(x) >0 Kui funktsioonil f (x) on piirväärtus tingimusel, et x x 0 , siis piirväärtus peab olema mittenegatiivne lim f ( x) = a 0 x x0 © 2001 - Ivari Horm ([email protected]), Toomas Sarv 3 Tõestus: Oletame, et a>0 Siis f ( x) - a a , sest f(x)0 a>0 Kuid teoreemi (5.1) järgi peab f(x) - a olema lõpmatult vähenev suurus ja seega muutub kui tahes väikeseks Seega a>0 on võimatu ja a0 m.o.t

Matemaatiline analüüs
11 allalaadimist
thumbnail
51
pdf

Enno Paisu konspekt

>0, 1() >0, et 0< x-x0< f(x)-a< >0, 2() >0, et 0< x-x0< g(x)-a< Olgu = min( 1 , 2 ) , siis 0< x-x0< f(x)-a< , g(x)-a< f(x)-a< - < f(x)-a < a- < f(x) < a+ a- < g(x) < a+ Võrratusest (5.1) järeldub, et a- < g(x) h(x) g(x) < a+ Seega a- < h(x) < a+ - < h(x)-a < h(x)-a< Järelikult >0, () >0, et 0< x-x0< h(x)-a< , mis tähendabki, et lim h( x) = a x x0 m.o.t.t. Teoreem 4 Olgu punkti x0 teatud ümbruses kehtiv võrratus f(x) >0 Kui funktsioonil f (x) on piirväärtus tingimusel, et x x 0 , siis piirväärtus peab olema mittenegatiivne lim f ( x) = a 0 x x0 © 2001 - Ivari Horm ([email protected]), Toomas Sarv 3 Tõestus: Oletame, et a>0 Siis f ( x) - a a , sest f(x)0 a>0 Kuid teoreemi (5.1) järgi peab f(x) - a olema lõpmatult vähenev suurus ja seega muutub kui tahes väikeseks Seega a>0 on võimatu ja a0 m.o.t

Matemaatiline analüüs
179 allalaadimist
thumbnail
156
pdf

Kõrgem matemaatika

. . . . . . . . . . . . . . . . 40 4.5 Tähtsad piirväärtused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.6 Pidevad funktsioonid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.7 Funktsiooni katkevusviise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.8 Pidevate funktsioonide omadused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5 Funktsiooni tuletis ja diferentsiaal 47 5.1 Keskmine kiirus ja hetkkiirus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.2 Tuletise definitsioon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.3 Põhiliste elementaarfunktsioonide tuletised . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.4 Diferentseerimise reeglid . . . . . . . . . . . . . . .

Kõrgem matemaatika
94 allalaadimist
thumbnail
2
pdf

Matemaailine analüüs I kollokvium III spikker

Kuna g(x) = O(1) (x[a,b]) F'(x) = (x)= f(x). Definitsioon (määramata integraal) Avaldist kujul F(x) + C; kus ja g(x)f(x) vaid punktis c ning () [, ] () = (1)( [, ]), siis F(x) on funktsiooni f (x) mingi algfunktsioon ja C on suvaline konstant () = =1 ( )+ (g( ) - f( )) = S(f) + (( ) - f( )) , kus (integreerimiskonstant), nimetatakse funktsiooni f (x) määramata integraaliks ja 0

Matemaatika analüüs I
139 allalaadimist
thumbnail
142
pdf

Matemaatilise analüüsi konspekt TTÜ's

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.8 L~opmatult kahanevate ja l~opmatult kasvavate suuruste v~ordlemine. 43 2.9 Funktsiooni pidevus. Katkevuspunktide liigitus. . . . . . . . . . . 45 ¨ 2.10 Uhepoolne pidevus. Pidevus hulkadel. Elementaarfunktsioonide pidevus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.11 L~oigul pidevate funktsioonide omadusi. . . . . . . . . . . . . . . . 52 3 Tuletis ja diferentsiaal 57 3.1 Tuletise, diferentseeruva funktsiooni ja diferentsiaali m~oisted. . . 57 3.2 N¨aiteid tuletiste kohta rakendustes. . . . . . . . . . . . . . . . . . 60 3.3 Tuletiste arvutamise p~ohireeglid . . . . . . . . . . . . . . . . . . . 61 3.4 Ilmutamata funktsiooni, p¨o¨ordfunktsiooni ja parameetrilise funk- tsiooni diferentseerimine. . . . . . . . . . . . . . . . . . . . . . . . 62

Matemaatiline analüüs
47 allalaadimist
thumbnail
142
pdf

Matemaatiline analüüs I

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.8 L~opmatult kahanevate ja l~opmatult kasvavate suuruste v~ordlemine. 43 2.9 Funktsiooni pidevus. Katkevuspunktide liigitus. . . . . . . . . . . 45 ¨ 2.10 Uhepoolne pidevus. Pidevus hulkadel. Elementaarfunktsioonide pidevus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.11 L~oigul pidevate funktsioonide omadusi. . . . . . . . . . . . . . . . 52 3 Tuletis ja diferentsiaal 57 3.1 Tuletise, diferentseeruva funktsiooni ja diferentsiaali m~oisted. . . 57 3.2 N¨aiteid tuletiste kohta rakendustes. . . . . . . . . . . . . . . . . . 60 3.3 Tuletiste arvutamise p~ohireeglid . . . . . . . . . . . . . . . . . . . 61 3.4 Ilmutamata funktsiooni, p¨o¨ordfunktsiooni ja parameetrilise funk- tsiooni diferentseerimine. . . . . . . . . . . . . . . . . . . . . . . . 62

Matemaatika
42 allalaadimist
thumbnail
22
doc

Matemaatiline analüüs I - kordamine eksamiks (ainekava järgi koostatud konspekt)

Funktsiooni piirväärtuse omadused: kahe funktsiooni summa*, vahe, korrutise ja jagatise piirväärtus. lim x a f (x) = A definitsioon: Olgu antud funktsioon y = f ( x ) , x X . Olgu punkt a piirkonna X kuhjumispunkt, s.o. punkt, mille igas ümbruses leidub vähemalt üks temast erinev hulga X punkt. Seega: Arvu A nimetatakse funktsiooni f piirväärtuseks punktis a , kui iga arvu > 0 korral leidub niisugune arv > 0 , et kehtib võrratus f ( x ) - A < , alati kui 0 < x -a < , ja kirjutatakse lim f ( x ) = A xa ehk f ( x ) A , kui x a või lim f ( x ) = A , kui x a. lim x a f (x) = ± definitsioon: Öeldakse, et funktsioonil f on lõpmatu piirväärtus punktis a , kui iga arvu N > 0 korral leidub selline arv > 0 , et kehtib võrratus

Matemaatiline analüüs i
776 allalaadimist
thumbnail
5
docx

Teine osaeksam, matemaatiline analüüs I, teooriaküsimused

Matemaatilise analüüsi (I) II osaeksami teooriaküsimused (Tallinnas õppivatele kaugõppijatele) 1. Funktsiooni muudu peaosa ja funktsiooni diferentsiaal. Sõltumatu muutuja diferentsiaal. Funktsiooni diferentsiaali valem. Ligikaudse arvutamise valem. Funktsiooni muut y koosneb kahest liidetavast, millest esimene [kui f ( x ) 0 ] on muudu niinimetatud peaosa, mis on võrdeline argumendi muuduga x . Korrutist f ( x ) x nimetatakse funktsiooni diferentsiaaliks ja tähistatakse sümboliga dy või df ( x ) . Sõltumatu muutuja x diferentsiaal dx ühtib tema muuduga x . dy

Matemaatika analüüs I
147 allalaadimist
thumbnail
1
doc

Matemaatiline analüüs 1 (2 teooria töö)

KT2 Pöördfunktsiooni tuletis on antud funktiooni tuletise pöördväärtus. Kui l~oigul [a; b] pideval ja rangelt monotoonsel funktsioonil y =f(x) leidub kohal a nullist erinev tuletis, siis pöördfunktsioonil x = g(y) leidub tuletis kohal b = f(a), kusjuures g '(b)=1/f ' (a) Param kujul f tuletis: kui f y=f(x) on antud parameetrilisel kujul x(t)=(t); y(t)=(t) , t=[a,b], kusjuures f-id (t) ja (t) on diferentseeruvad vahemikus (a,b) ja (t) on rangelt monotoonne lõigul[a,b] ning (t)0 (t=(a,b), siis y '=(t)/(t) F f(x) n-järku tuletiseks nim f-i f(x) (n-1)-järku tuletise tuletits, st fn(x)=(fn-1(x)) ' F-i y=f(x) n-järku diferentsiaaliks nim diferentsiaali selle f-i n-1 järku diferentsiaalist dny=d(dn-1y)

Matemaatiline analüüs
261 allalaadimist
thumbnail
32
doc

Matemaatika I küsimused ja mõisted vastustega

ühepoolsed piirväärtused f ( a+) = lim f(x); x a+ ja f( a- ) = lim f(x); x a - nimetatakse 1. liiki katkevuspunktiks. ( hüppekoht, kõrvaldatav katkevuskoht, ................................................... 3 17. Teist liiki katkevuspunkt - arvu a nimetatakse funktsiooni y = f(x) teist liiki katkevuspunktiks, kui lim f(x); x a - on lõpmatu või ei eksisteeri ............................................ 4 20. Diferentseeruv funktsioon - kui funktsioonil y = f(x) on tuletis punktis x = x0, siis ütleme, et funktsioon on diferentseeruv punktis x0. Kui funktsioon on aga diferentseeruv mingi piirkonna igas punktis, öeldakse, et funktsioon on diferentseeruv selles piirkonnas. ..................................... 4 1. Arvuhulgad: naturaal-, täis-, ratsionaal-, reaal- ja kompleksarvud. Nende omadused. ...............6 2. Reaalarvu absoluutväärtus, absoluutväärtuse omadused. ............................................................6 Absoluutväärtuse omadused..

Matemaatika
118 allalaadimist
thumbnail
26
doc

Matemaatiline analüüs I - kordamine eksamiks

5. Ekvivalentsed lõpmata väikesed funktsioonid Definitsioon 4. Funktsiooni = (x) nimetame lõpmata väikeseks (hääbuvaks) piirprotsessis x a, kui lim xa (x)= 0. Definitsioon 5 Lõpmata väikeseid funktsioone = (x) ja = (x) nimetatakse ekvivalentseteks piirprotsessis x a, kui ( x ) lim xa ( x ) = 1. Kirjutame (x) ~ (x), x a. Teoreem 8. Kui piirprotsessis x a lõpmata väikeste funktsioonide y= (x), y= 1(x), y= (x), y=1(x) korral (x) 1(x), (x) 1(x) ja eksisteerib piirväärtus ( x ) lim x a , 1 ( x ) siis ( x) ( x) 1) lim x a = lim x a 1 , ( x) 1 ( x)

Matemaatiline analüüs i
687 allalaadimist
thumbnail
23
doc

Matemaatiline analüüs KT1 vastused

Tähis X. y= f(x). Väärtuste hulk- Hulka Y = {f(x) || x kuulub X} Funktsiooni esitamine tabelina- Funktsiooni argumendi võimalikud väärtused esitatakse tabeli ühes reas (veerus) ja neil vastavad funktsiooni väärtused tabeli teises reas (veerus). On võimalik vaid siis, kui funktsiooni argumendil on lõplik arv väärtusi. Funktsiooni esitamine analüütiliselt- Funktsioon esitatakse valemi kujul. Kui vaja, lisatakse ka määramispiirkonna kirjeldus. Näiteks avaldis y = x2 , x kuulub [0, 1] kirjeldab funktsiooni, mille määramispiirkonnaks on lõik [0, 1] ja iga x korral sellelt lõigult arvutatakse argumendile x vastavad funktsiooni väärtused f(x) vastavalt valemile f(x) = x2. Funktsiooni graafiku mõiste- G = {P = (x, f(x)) || x X} . Graafiku mõiste Esitatkse ristkordinaadistikus.Kanname tasandile riistuvad x ja y teljed.Vaatleme selles teljestikus joont G mis koosneb punktidest P=(x;f(x)) kusjuures P esimene

Matemaatiline analüüs I
105 allalaadimist
thumbnail
25
doc

Määratud integraal ja selle rakendused

b lim s = max xi0 i =1 f(i)xi = a f(x) dx · Nüüd veendume, et see piirväärtus on tõesti INTEGRAAL: 1) mis on integraal? See on avaldis F(x) + C, kus F(x) on funktsiooni f(x) algfunktsioon ja C on suvaline konstant . 2) Aga avaldis F(x) + C tähistab ju tohutut funktsioonide parve, mille kõikide tuletised võtavad ühesuguse kuju f(x). 3) Geomeetriliselt tähendab F(x) + C kimp lõpmata arvu funktsioonidest, et on parv lõpmatu hulk jooni, mis asuvad üksteise alla y-telje suhtes, mis omakorda annavadki ju kahemõõtmelise kujundi pinna!!!! Määratud integraalis on vaid ära piiratud lõik, millele

Matemaatiline analüüs
221 allalaadimist
thumbnail
16
doc

Kordamisküsimused - vastused

z / f z / f x'i ( A) või ( A) või z / f ( A) xi x i 5. Funktsiooni täisdiferentsiaal Funktsiooni täisdiferentsiaaliks kohal A nimetatakse argumendi muutude x j y suhtes lineaarset liiget Cx+Dy valemis z=Cx+Dy+ ja tähistatakse dz või df 6. Täisdiferentsiaali rakendusi ligikaudsetes arvutustes (NB! Olen kasutanud sümblit ¤ delta asemel ja b osatuletise tagurpidi d asemel) Olgu funktsioon z=f(x,y) punktis (x,y) diferentseeruv. Leiame selle täismuudu: ¤z=f(x+¤x,y+¤y)- -f(x,y), millest f(x+¤x,y+¤y)=f(x,y)+¤z Teame, et ¤z~dz, kus dz=(bf/bx)*¤x+(bf/by)*¤y Saame ligikaudse valemi: f(x+¤x,y+¤y)~f(x,y)+(bf(x,y)/bx)*¤x+(bf(x,y)/by)*¤y Antud valemit saabki kasutada ligikaudses arvutamises. 7. Liitfunktsiooni tuletis (Monsa vastab) 8. Ilmutamata funktsiooni tuletis Kui funktsioon y=f(x) on antud ilmutamata kujul, F(x,y)=0 ja P(x,y) on selle

Matemaatiline analüüs 2
511 allalaadimist
thumbnail
35
pdf

Mitmemuutuja funktsioonid

Funktsiooni tähistused. z = f ( x, y ) u = f ( x, y , z ) u = f ( x1 , x 2 ,..., x n ) , kui n 4 Def. 1.7. Kõigi n-mõõtmelise ruumi R n punktide hulka, mille korral funktsioon eksisteerib ja omab lõpliku väärtust, nimetatakse selle funktsiooni määramispiirkonnaks. Kõigi väärtuste y hulk, mida funktsioon omandab, kui selle argumendid läbivad määramispiirkonna X, on funktsiooni väärtuste hulgaks Y. Määramispiirkonna leidmine. Avaldis Tingimus 1. B ( x, y ) A( x, y ) 0 A( x, y ) 2. 2 k A( x, y ) A( x, y ) 0 3. log a A( x, y ) A( x, y ) > 0 4. arcsin A( x, y ) - 1 A( x, y ) 1 arccos A( x, y ) 2. Kahe muutjua funktsiooni piirväärtus ja pidevus. Teoreemid kinnises tõkestatud piirkonnas pideva funktsiooni kohta. Kui Q( x, y ) lähenemisel punktile P( x0 , y 0 ) funktsiooni z = f ( x, y ) piirväärtus on arv a, siis me kirjutame lim f ( x, y ) = a x x0 y y0 Def. 2.1.

Matemaatiline analüüs 2
240 allalaadimist
thumbnail
2
odt

Matemaatiline analüüs I, II kollokviumi spikker

1. Funktsiooni diferentseeruvuse geomeetriline tõlgendus. 11. Kumerus, nõgusus, käänupunktid. Seos teist järku tuletisega. Funktsiooni diferentsiaal on kõverjoonele y = f(x) tõmmatud puutuja ordinaadi muut, mis vastab Oeldakse, et funktsiooni f(x) graafik on kumer punktis a (tapsemini punktis (a, f(a))), kui leidub punkti a argumendi numbrile x=dx. selline -umbrus, et funktsiooni f(x) graafik on argumendi x väärtustel ümbrusest (a - , a + ) allpool 2. Funktsiooni kõrgemat järku tuletised

Matemaatiline analüüs
33 allalaadimist
thumbnail
25
doc

MATEMAATILINE ANALÜÜS I TEOORIA KONTROLLTÖÖ Küsimused vastustega

Tähis X. y= f(x). Väärtuste hulk- Hulka Y = {f(x) || x kuulub X} Funktsiooni esitamine tabelina- Funktsiooni argumendi võimalikud väärtused esitatakse tabeli ühes reas (veerus) ja neil vastavad funktsiooni väärtused tabeli teises reas (veerus). On võimalik vaid siis, kui funktsiooni argumendil on lõplik arv väärtusi. Funktsiooni esitamine analüütiliselt- Funktsioon esitatakse valemi kujul. Kui vaja, lisatakse ka määramispiirkonna kirjeldus. Näiteks avaldis y = x2 , x kuulub [0, 1] kirjeldab funktsiooni, mille määramispiirkonnaks on lõik [0, 1] ja iga x korral sellelt lõigult arvutatakse argumendile x vastavad funktsiooni väärtused f(x) vastavalt valemile f(x) = x2. Funktsiooni graafiku mõiste- G = {P = (x, f(x)) || x ∈ X} . Graafiku mõiste Esitatkse ristkordinaadistikus.Kanname tasandile riistuvad x ja y teljed.Vaatleme selles teljestikus joont G mis koosneb punktidest P=(x;f(x))

Matemaatiline analüüs 1
43 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun