Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

Mat analüüs 1 - sarnased materjalid

integraal, rajad, muutuja, piirväärtus, tuletis, integraaliks, geom, lõpmatu, integraaliga, integraalis, teoreem, integraalid, kirjutatakse, osatuletised, ekstreemumid, tükki, liidan, integraalide, miinus, newton, algfunktsioon, ositi, integreerimine, rajaga, aditiivsus, teoreemid, pidevad, ligikaudne, trapetsvalem, nivoojooned, osamuut
thumbnail
11
doc

Määratud integraal

mx P Mx võrdus esineb vaid siis, kui y = f ( x ) = const P Seega m M x Kui x 0 , lähenevad nii m kui ka M funktsiooni väärtusele kohal x lim m = lim M = f ( x ) x0 x 0 P Järelikult on ka lim = f ( x) ning tuletise definitsiooni meenutades P( x ) = f ( x ) (1) x 0 x Leidsime, et pindfunktsiooni tuletis võrdub pindala piirava kõvera lõppordinaadiga. 1 KÕVERJOONSE TRAPETSI PINDALA Kõverjoonse trapetsi abBA pindala S abBA = P ( b ) ehk pindala võrdub pindfunktsiooni väärtusega kohal x =b. Valem (1) näitab,et pindfunktsioon on üks funktsiooni y = f ( x ) algfunktsioonidest. Olgu y = F ( x ) mingi algfunktsioon funktsioonile y = f ( x )

Kõrgem matemaatika
181 allalaadimist
thumbnail
11
pdf

Määratud integraal

mx S Mx võrdus esineb vaid siis, kui y = f ( x ) = const S Seega m M x Kui x 0 , lähenevad nii m kui ka M funktsiooni väärtusele kohal x lim m = lim M = f ( x ) x0 x 0 S Järelikult on ka lim = f ( x) ning tuletise definitsiooni meenutades S ' ( x ) = f ( x ) (1) x 0 x Leidsime, et pindfunktsiooni tuletis võrdub pindala piirava kõvera lõppordinaadiga. 1 KÕVERJOONSE TRAPETSI PINDALA Kõverjoonse trapetsi abBA pindala S abBA = S ( b ) ehk pindala võrdub pindfunktsiooni väärtusega kohal x =b. Valem (1) näitab,et pindfunktsioon on üks funktsiooni y = f ( x ) algfunktsioonidest. Olgu y = F ( x ) mingi algfunktsioon funktsioonile y = f ( x )

Matemaatika
66 allalaadimist
thumbnail
14
pdf

Matemaatiline analüüs II

Mitmemõõtmelise ruumi mõiste Def: On antud n reaalarvu x1...xn ja nende järjestatud jada (x1...xn)(-punkt) ­ seda nim n- mõõtmelise ruumi punktiks. Rn={(x1,...,xn) | xi R, i=1,...,n}, P(x1,...,xn) ­ punkt koordinaatidega xi n=1: R1={P(x1) | x1 R} geom. sirge n=2: R2={P(x1,x2) | x1,x2 R} geom. tasand n=3: R3={P(x1,x2,x3) | x1,x2,x3 R} geom. ruum Punkt A on piirkonna D sisepunkt, sel korral kui tal leidub ümbrus, mis sisaldub piirkonnas D. Punkt A on piirkonna D rajapunkt sel korral kui iga tema ümbrus sisaldab nii piirkonna D kui ka piirkonda mittekuuluvaid punkte. Piirkond D on lahtine, kui ta koosneb sisepunktidest. Piirkond D on kinnine, kui ta koosneb nii sise- kui ka rajapunktidest. Mitme muutuja funktsiooni mõiste Def: nMF f:RnR:P(x1,...,xn) Rn a w=f(P) f(x1,...,xn) R

Matemaatiline analüüs 2
336 allalaadimist
thumbnail
11
doc

Matemaatiline analüüs - konspekt II

32. Lokaalse ekstreemumi piisavad tingimused: tingimus I. Olgu x1 funktsiooni f kriitiline punkt. Kui läbides punkti x1 vasakult paremale funktsiooni tuletise märk muutub plussist miinuseks siis on funktsioonil selles punktis lokaalne maksimum. Kui aga läbides punkti x1 vasakult paremale funktsiooni tuletise märk muutub miinusest plussiks siis on funktsioonil selles punktis lokaalne miinimum. Kui funktsioonil eksisteerib teist järku tuletis siis saab lokaalsete ekstreemumite olemasolu kontrollida ka selle abil. Nimelt maksimumpunkti läbides vasakult paremale funktsiooni graafiku puutuja tõus väheneb. See tähendab et funktsiooni tuletis kahaneb. Funktsiooni tuletis kahaneb aga juhul kui teine tuletis on negatiivne. Seevastu miinimupunkti läbides puutuja tõus suureneb, seega tuletis kasvab. Tuletis kasvab aga juhul kui teine tuletis on positiivne. Järelikult kehtib järgmine väide: Lokaalse ekstreemumi piisav tingimus II

Matemaatiline analüüs
350 allalaadimist
thumbnail
7
pdf

Määramata integraalid

Õppekirjandus: [1] Abel, E., Kokk, K. Kõrgem matemaatika (Harjutusülesanded). EMS, Tartu, 2003. [2] Lõhmus, A., Petersen, I., Roos, H. Kõrgema matemaatika ülesannete kogu. "Valgus", Tallinn, 1982. [3] Loone, L., Soomer, V. Matemaatilise analüüsi algkursus. "TÜ Kirjastus", Tartu, 2006. [4] Tõnso, T., Veelmaa, A. Matemaatika XII klassile. "Mathema", Tallinn, 1995. [5] Piskunov, N. Diferentsiaal- ja integraalarvutus. "Valgus", Tallinn, 1981. 3.1 Algfunktsioon ja määramata integraal Kursuse eelnevas osas käsitlesime ühe muutuja funktsiooni y = f (x) tuletise y = f (x) leid- misega seotud küsimusi. Teame, et funktsiooni f (x) = 2x tuletis on f (x) = 2 ja funktsiooni f (x) = sin x tuletis on f (x) = cos x. Vaatleme nüüd vastupidist ülesannet. Olgu antud funktsioon y = f (x). Kuidas leida sellist funktsiooni y = F (x), mille tuletiseks oleks antud funktsioon y = f (x), st kuidas leida funktsiooni y = F (x), kui on teada, et F (x) = f (x)?

Kõrgem matemaatika
172 allalaadimist
thumbnail
25
doc

Määratud integraal ja selle rakendused

avaldubki külgede korrutisega... Ametlikult öeldes: Kui f(x) 0 , siis integraalne alamsumma võrdub arvuliselt kõvera all oleva murdjoonega piiratud seesmise treppkujundi AC0N1C1N2Cn-1NnB pindalaga. MIDA TÄHELDAME, KUI VAATAME INTEGRAALSET ÜLEMSUMMAT? Kui f(x) 0, siis integraalne ÜLEMsumma võrdub arvuliselt kõvera peal oleva murdjoonega piiratud ,,välimise treppkujundi" (viirutatud kujundi) pindalaga. Nii hakkabki väljenduma vaikselt integraal kui pindala , kkdw jms arvutamise vahend b) Integraalse alam ­ja ülemsumma omadusi Olgu funktsioon f(x) pidev lõigul [a, b] ja x n vastava lõigu alamlõigu pikkust iseloomustavad argumendi muudud 1) Kuna igal alamlõigul on funktsiooni vähim väärtus alati kas väiksem funktsiooni suurimast väärtusest või sellega võrdne, siis ka integraalne alamsumma on alati kas väiksem ülemsummast või siis sellega võrdne: ehk:

Matemaatiline analüüs
221 allalaadimist
thumbnail
21
docx

Matemaatiline analüüs 1, teine teooriatöö kordamisküsimused

tingimust f(a)=f(b), siis leidub vahemikus (a,b) vähemaly üks punkt c nii, et f '(c)=0. Tõestus: Kuna f(x) on pidev lõigul [a,b], siis saavutab ta oma suurima ja väärtuse sellel lõigul vastavalt lõigul pidevate funktsioonide omadusele 1. Olgu M suurim väärtus ja m vähim väärtus. Kui M=m, siis on funktsioon lõigul [a,b] konstantne, st kõigi x[a,b] korral kehtib f(x)=M=m. Sellisel juhul on f(x) tuletis nullfunktsioon, st f'(x)=0 ja teoreemi väide on täidetud iga c(a,b) korral. Kui Mm võib funktsioon oma absoluutse ekstreemumi saavutada kas lõigu [a,b] otspunktis või vahemikus (a,b). Oletame, et mõlemad ekstreemumid saavutatakse lõigu otspunktides a ja b. Siis on f(x) väärtus ühes otspunktis M ja teises m ning võrratusest Mm tuleneb, et f(x) väärtused lõigu otspunktides on erinevad, kuid me eeldasime, et funktsiooni väärtused lõigu otspunktides on võrdsed.

Matemaatika
10 allalaadimist
thumbnail
18
pdf

Määratud integraal

5 M¨ a¨ aratud integraal 5.1 M¨ a¨ aratud integraali mo ~iste Olgu funktsioon y = f (x) m¨a¨aratud l~oigul [a; b]. Jaotame l~oigu [a; b] suvalisel viisil punktidega x1 , x2 , ... xn-1 n osal~oiguks, kusjuures a = x0 < x1 < x2 < . . . < xk-1 < xk < . . . < xn = b. Tekkinud osal~oigud on [xk-1 ; xk ], kus k = 1, 2, . . . , n. T¨ahistagu xk = xk - xk-1 k-nda osal~oigu pikkust.

Matemaatiline analüüs 2
176 allalaadimist
thumbnail
36
pdf

Matemaatiline analüüs

Kui funktsioon f on lõigul [a,b] pidev, vahemikus (a,b) diferentseeruv ja rahuldab tingimust f(a) = f(b), siis leidub vahemikus (a,b) vähemalt üks punkt c nii, et f’(c) = 0. Tõestus. Kuna f(x) on pidev lõigul [a,b], siis saavutab ta oma suurima ja vähima väärtuse sellel lõigul. Olgu M suurim väärtus ja m vähim väärtus. Kui M = m, siis on funktsioon lõigul [a,b] konstantne, st kõigi x ∈ [a,b] korral kehtib f(x) = M = m. Sellisel juhul on f(x) tuletis nullfunktsioon, st f’(x) ≡ 0, ja teoreemi väide on täidetud iga c ∈ (a,b) korral. Edasi vaatleme juhtu, kui M  m. Funktsioon võib oma absoluutse ekstreemumi saavutada kas lõigu [a,b] otspunktis või vahemikus (a,b). Oletame kõigepealt, et mõlemad absoluutsed ekstreemumid saavutatakse lõigu otspunktides a ja b. Siis on f(x) väärtus ühes otspunktis M ja teises otspunktis m ning võrratusest M  m tuleneb, et f(x) väärtused lõigu otspunktides on erinevad

Matemaatiline analüüs 1
14 allalaadimist
thumbnail
20
docx

MATEMAATILINE ANALÜÜS I

X; muutumispiirkond Y Näited: 2. Funktsiooni graafik (definitsioon, piltlik esitus). Definitsioon: funktsiooni graafik= {(x,f(x)): x∈X} Piltlikult: 3. Pöördfunktsioon (definitsioon). Näiteid. Kuidas leida pöördfunktsioone? Definitsioon: funktsiooni kujul f(x)-1 nimetatakse pöördfunktsiooniks Leidmine: 4. Põhilised elementaarfunktsioonid. Nende omadused (määramis- ja muutumispiirkonnad) ja graafikud. 5. Funktsiooni piirväärtus (definitsioon, tähistus). Graafiline esitus (ülesanne lk 7). Millal piirväärtus ei eksisteeri? Definitsioon: Arvu L nimetatakse funtsiooni piirväärtuseks kohal a, kui iga ε>0 puhul leidub niisugune arv δ>0, et iga x≠a puhul, mis rahuldab värratus |x-a|< δ, kehtib värratus |f(x)-L|< ε Piirväärtus ei eksisteeri: 1. Parem-ja vasakpoolsed piirväärtused eksiteerivad kuid ei võrdu 2

Matemaatiline analüüs 1
36 allalaadimist
thumbnail
22
doc

Matemaatiline analüüs I - kordamine eksamiks (ainekava järgi koostatud konspekt)

.., ) Täisarvud ­ kõik naturaalarvud ja nende vastandarvud ning lisaks 0, tähistatakse Z m Ratsionaalarvud ­ on sellised reaalarvud, mida saab esitada kahe täisarvu m ja n jagatisena nii et n n 0 . Igal ratsionaalarvul on ka lõpmatu kümnendmurdarendus ja see on alati perioodiline, tähistatakse Q Irratsionaalarvud ­ mitteperioodilised lõpmatud kümnendmurrud. Tähistus I Reaalarvud ­ hulk R, koosneb kõikidest ratsionaal- ja irratsionaalarvudest 2. Tähtsamad reaalarvude hulgad (lõik, vahemik, poollõik). Hulga X R ülemine ja alumine raja. Olgu X mingi reaalarvude hulk (X R). Hulka X nimetatakse ülalt tõkestatud hulgaks, kui leidub selline arv M, nii et x M iga x X korral

Matemaatiline analüüs i
776 allalaadimist
thumbnail
32
pdf

Matemaatiline analüüs II konspekt - MITME MUUTUJA FUNKTSIOONID

Kordamine eksamiks aines matemaatiline analüüs II (2004/2005 õa kevad) §1. MITME MUUTUJA FUNKTSIOONID 1. Ruum R m , hulgad selles ruumis Def. Kõigi m reaalarvust koosnevate järjestatud süsteemide P = ( x1 ,..., x m ) hulka nimetatakse m-mõõtmeliseks ruumiks. Def. Kui m-mõõtmelises ruumis defineeritakse süsteemide P = ( x1 ,..., x m ) ja Q = ( y1 ,..., y m ) m vaheline kaugus d (P, Q ) valemiga d (P, Q ) = (x - y i ) , siis nimetatakse seda ruumi

Matemaatiline analüüs II
187 allalaadimist
thumbnail
32
doc

Matemaatika I küsimused ja mõisted vastustega

Sisujuht 16. Esimest liiki katkevuspunkt - niisugust katkevuspunkti, kus funktsioonil f on olemas ühepoolsed piirväärtused f ( a+) = lim f(x); x a+ ja f( a- ) = lim f(x); x a - nimetatakse 1. liiki katkevuspunktiks. ( hüppekoht, kõrvaldatav katkevuskoht, ................................................... 3 17. Teist liiki katkevuspunkt - arvu a nimetatakse funktsiooni y = f(x) teist liiki katkevuspunktiks, kui lim f(x); x a - on lõpmatu või ei eksisteeri ............................................ 4 20. Diferentseeruv funktsioon - kui funktsioonil y = f(x) on tuletis punktis x = x0, siis ütleme, et funktsioon on diferentseeruv punktis x0. Kui funktsioon on aga diferentseeruv mingi piirkonna igas punktis, öeldakse, et funktsioon on diferentseeruv selles piirkonnas. ..................................... 4 1. Arvuhulgad: naturaal-, täis-, ratsionaal-, reaal- ja kompleksarvud. Nende omadused. ...............6 2

Matemaatika
118 allalaadimist
thumbnail
2
pdf

Matemaailine analüüs I kollokvium III spikker

F(x) on funktsiooni f (x) mingi algfunktsioon ja C on suvaline konstant () = =1 ( )+ (g( ) - f( )) = S(f) + (( ) - f( )) , kus (integreerimiskonstant), nimetatakse funktsiooni f (x) määramata integraaliks ja 0 tähistatakse () st () = () + . Määramata integraali tuletis on tingimuste f(x) = O(1), g(x) = O(1) (x [, ]) põhjal(( )- f( )) 0.

Matemaatika analüüs I
139 allalaadimist
thumbnail
1
doc

Matemaatiline analüüs 1 (2 teooria töö)

KT2 Pöördfunktsiooni tuletis on antud funktiooni tuletise pöördväärtus. Kui l~oigul [a; b] pideval ja rangelt monotoonsel funktsioonil y =f(x) leidub kohal a nullist erinev tuletis, siis pöördfunktsioonil x = g(y) leidub tuletis kohal b = f(a), kusjuures g '(b)=1/f ' (a) Param kujul f tuletis: kui f y=f(x) on antud parameetrilisel kujul x(t)=(t); y(t)=(t) , t=[a,b], kusjuures f-id (t) ja (t) on diferentseeruvad vahemikus (a,b) ja (t) on rangelt monotoonne lõigul[a,b] ning (t)0 (t=(a,b), siis y '=(t)/(t) F f(x) n-järku tuletiseks nim f-i f(x) (n-1)-järku tuletise tuletits, st fn(x)=(fn-1(x)) ' F-i y=f(x) n-järku diferentsiaaliks nim diferentsiaali selle f-i n-1 järku diferentsiaalist dny=d(dn-1y)

Matemaatiline analüüs
261 allalaadimist
thumbnail
10
doc

Matemaatiline analüüs I konspekt - funktsioon

"Matemaatiline analüüs I" Funktsioon Funktsioon- Kui muutja x igale väärtusele piirkonnas X vastab muutuja y kindel väärtus, siis öeldakse, et y on muutuja x funktsioon piirkonnas X. Sõltumatu muutuja on x, sõltuv y Funktsiooni määramispiirkond-Funktsiooni y määramispiirkonnaks nimetakse argumendi x muutumispiirkonda. Funktsioonide liigid- 1. Paaris funktsioon-rahuldab tingimust f(x)=f(-x) ja see on sümmeetriline y-telje suhtes. (Nt:y=x2) 2.Paaritu funktsioon-rahuldab tingimust f(-x)=-f(x) ja see on sümmetrialine 0 punkti suhtes. (y=sinx) 3.Perioodilised funktsioonid- rahuldab tingimust f(x+T)=f(x), T on periood. 4

Matemaatiline analüüs
259 allalaadimist
thumbnail
26
doc

Matemaatiline analüüs I - kordamine eksamiks

Kõigi ratsionaalarvude hulga tähistame sümboliga Q. Ratsionaalarvudeks on parajasti need arvud, mis on esitatavad lõplike või lõpmatute perioodiliste kümnendmurdudena. Arve, mis on esitatavad lõpmatute mitteperioodiliste kümnendmurdudena, nimetatakse irratsionaalarvudeks. Kõik ratsionaalarvud ja irratsionaalarvud moodustavad reaalarvude hulga. Kõigi reaalarvude hulga tähistame sümboliga R. Iga lõplikku kümnendmurdu a= , 12 ...n saab esitada lõpmatu kümnendmurruna kahel viisil: a = , 12 ...n 00... või a = , 12 ...(n -1)99... . Edaspidi välistame kümnendmurru esitamise kujul, mis lõpeb numbriga 9 perioodis. See eeldus võimaldab hõlpsamini defineerida reaalarvude võrdlemise eeskirjad. Seega reaalarvudeks nimetame kõiki lõpmatuid kümnendmurde, mis ei lõpe numbriga 9 perioodis. Reaalarvude võrdlemine Reaalarve a = , 12 ...n ... ja b = , 1 2 ...n ... nimetame võrdseteks, kui a = b, i = i , i = 1,2, ....

Matemaatiline analüüs i
687 allalaadimist
thumbnail
12
docx

Matemaatiline analüüs I 3. kollokviumi spikker

Küsimused: 1.Määratud integraali (Riemanni mõttes) definitsioon. Darbouc ülem- ja alamsummad. Riemanni summa ja Darboux’ summade seos-viimane pilt. ∫ f ( x ) dx st ∫ f ( x ) dx=F ( x ) +C . Määramata integraali tuletis on f (¿ ξi) ∆ xi SΠn n võrdne integreeritava funktsiooniga st ( ∫ f ( x ) dx )’= f(x). Tõestus: ( ∫ f ( x ) dx Riemanni summa lõigul [a,b] (f) =

Matemaatiline analüüs 1
24 allalaadimist
thumbnail
39
pdf

Matemaatiline analüüs I konspekt -Tõkestatud hulgad

hulga X punkte kui ka neid punkte, mis ei kuulu hulka X . Sisepunkt ei saa olla rajapunkt. Sisepunkt on alati kuhjumispunkt. Rajapunkt võib olla kuhjumispunkt. 1 Kordamine matemaatilise analüüsi I eksamiks matemaatika-informaatika teaduskonnas 04/05 õ.a Funktsioon, tema graafik Olgu X mingi reaalarvude hulk. Kui x tähendab mis tahes arvu hulgast X , siis öeldakse, et x on muutuv suurus ehk muutuja hulgas X . Iga arvu x X nimetatakse muutuja x väärtuseks. Definitsioon: Kui igale arvule x X on mingi eeskirja f abil seatud vastavusse üks reaalarv y , siis öeldakse, et hulgas X on määratud funktsioon y = f ( x ) ja kirjutatakse: y = f ( x ) , x X . Muutujat x nimetatakse funktsiooni argumendiks ehk sõltumatuks muutujaks ja muutujat y tema sõltuvaks muutujaks. Hulka X nimetatakse funktsiooni määramispiirkonnaks ja hulka

Matemaatiline analüüs I
73 allalaadimist
thumbnail
8
doc

Kordamisküsimused aines "Matemaatiline analüüs I"

· Algebralised funktsioonid on funktsioonid, mis saadakse lõpliku arvu algebraliste tehte rakendamise teel. a. Täisratsionaalsed funktsioonid ehk astmefunktsioonid b. Murdratsionaalsed funktsioonid ehk kahe täisratsionaalse funktsiooni jagatis c. Irratsionaalsed funktsioonid ( sisaldavad lisaks eelnevale veel juurimist) d. Mittealgebralised funktsioonid Liitfunktsioon- on funktsioon, kus sõltuv muutuja y sõltub argumendist x mitme funktsiooni vaheldusel. Kui y=f(z) ja z=g(x) , seega saame liitfunktsiooni y=f(g(x)) . Liitfunktsioonil võib olla ka enam kui kaks koostisosa ja seega enam kui üks vahepealne muutuja. Pöördfunktsioon- pöördfunktsiooni saame, kui võtame algse funktsiooni , avaldame sealt x ja seejärel vahetame x ja y ära. Näiteks : y=2x ; x=0,5y ; y=0,5x , seega y=2x pöördfunktsioon on y=0,5x. Funktsiooni y = f(x) pöördfunktsiooniks nimetatakse funktsiooni y =( x )

Matemaatika analüüs I
159 allalaadimist
thumbnail
156
pdf

Kõrgem matemaatika

. . . . . . . . . . . . . . . . 29 3.5 Põhilised elementaarfunktsioonid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 SISUKORD 3.6 Elementaarfunktsioonid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.7 Jadad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4 Funktsiooni piirväärtus ja pidevus 37 4.1 Jada piirväärtus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.2 Funktsiooni piirväärtuse mõiste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.3 Ühepoolsed piirväärtused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.4 Funktsiooni piirväärtuse omadused . . . . . . . . .

Kõrgem matemaatika
94 allalaadimist
thumbnail
7
docx

Majandusmatemaatika teooria

Majandusmatemaatika teooria 1.Mis on funktsioon? Kui hulga X igale elemendile x on seatud vastavusse kindel element y hulgast Y, siis öeldakse, et hulgal X on defineeritud funktsioon. Mis on sõltumatu muutuja, sõltuv muutuja? Elementi x nimetatakse sõltumatuks muutujaks ehk argumendiks, elementi y sõltuvaks muutujaks ehk (elemendi x) kujutiseks. Sõltumatu muutuja - algebra: Valemis iga muutuja, mille väärtus ei sõltu ühestki teisest muutujast. statistika: Muutuja, mida eksperimentide seeria käigus muudetakse. Sõltuv muutuja - algebra: Valemis muutuja, mille väärtus sõltub ühest või enamast teisest muutujast. statistika: Mõõdetav suurus, mis näitab kohtlemise efektiivsust. 2. Mis on funktsiooni määramispiirkond? Hulka X nimetatakse funktsiooni määramispiirkonnaks, määramispiirkond on funktsiooni argumendi nende väärtuste hulk, mille korral funktsiooni väärtus on defineeritud. Funktsiooni f sisendväärtuste hulka X

Majandusmatemaatika
76 allalaadimist
thumbnail
20
docx

Matemaatiline analüüs II kontrolltöö

rahuldab tingimust siis leidub vahemikus (a,b) vähemaly üks punkt c nii, et . Tõestus: Kuna f(x) on pidev lõigul [a,b], siis saavutab ta oma suurima ja väärtuse sellel lõigul vastavalt lõigul pidevate funktsioonide omadusele 1. Olgu M suurim väärtus ja m vähim väärtus. Kui , siis on funktsioon lõigul [a,b] konstantne, st kõigi korral kehtib. Sellisel juhul on f(x) tuletis nullfunktsioon, st ja teoreemi väide on täidetud iga korral. Kui võib funktsioon oma absoluutse ekstreemumi saavutada kas lõigu [a,b] otspunktis või vahemikus (a,b). Oletame, et mõlemad ekstreemumid saavutatakse lõigu otspunktides a ja b. Siis on f(x) väärtus ühes otspunktis M ja teises m ning võrratusest Mm tuleneb, et f(x) väärtused lõigu otspunktides on erinevad, kuid me eeldasime, et funktsiooni

Matemaatiline analüüs
122 allalaadimist
thumbnail
16
doc

Kordamisküsimused - vastused

..,xm), määramispiirkonnaga D, graafikuks nimetatakse järgmist ruumi Rm+1 alamhulka ={(x1,x2,...,xm,f(x1,x2,...,xm))||P(x1,x2,...,xm)D} 2. Nivoojooned ja pinnad Kahemuutuja funktsiooni z=f(x,y) nivoojooneks nimetatakse joont, mille moodustavad piirkonna D punktid (x,y) mille korral f(x,y)=C, kus C on etteantud konstant Skalaarvälja f ehk funktsiooni f nivoopinnaks nimetatakse pinda, mis koosneb piirkonna D punktidest (x,y,z) mille korral f(x,y,z)=C, kus C on etteantud konstant. 3. Mitme muutuja funktsiooni piirväärtus ja pidevus Mitmemuutuja funktsiooni piirväärtus m-muutuja funktsioonil f on piirväärtus b punktis A kui suvalises piirprotsessis PA, mis rahuldab tingimust PA, funktsiooni väärtus f(P) läheneb arvule b Mitmemuutuja funktsiooni pidevus Olgu antud mitmemuutuja funktsioon z=f(P) määramispiirkonnaga D. Funktsiooni f nimetatakse pidevaks punktis A kui AD; eksisteerib piirväärtus lim f ( P ) ; lim f ( P ) = f ( A) PA PA

Matemaatiline analüüs 2
511 allalaadimist
thumbnail
13
doc

Matemaatiline analüüs 1 kordaisküsimuste vastused

1. Muutuvad suurused. Def. 1 *Suurusi, mis omand erinevaid väärtusi(vaadeldavas protsessis) nim muutuvateks suurusteks. *Suurusi, mis omand. konstantseid püsivaid väärtusi nim jäävateks suurusteks e. konstantideks. *Tähistus: x,y,z...u,v,w,t *NT ühtlane liikumine-> kiirus konstantne v, teepikkus ja aeg muutuvad *Muutuvad suurused on tavaliselt reaalarvud-> geom võime esitada sirgel *absoluutsed konstandid- mistahes protsessis vaadeldavad suurused: =3,14..., e =2,71 1. väärtused on diskreetsed x: x1,x2,x3 (arvjada) 2. väärtused omand pideva alamhulga reaalteljel (+joonised!): *X={x IR|axib} lõik * X={x IR|a0 (joonis) 2. Funktsiooni mõiste Olgu antud 2 suurust x-muutumisp

Kõrgem matemaatika
147 allalaadimist
thumbnail
18
docx

Matemaatiline analüüs KT2 vastused

Rolle'i teoreem. Kui funktsioon f on lõigul [a, b] pidev, vahemikus (a, b) diferentseeruv ja rahuldab tingimust f(a) = f(b), siis leidub vahemikus (a, b) vähemalt üks punkt c nii, et f(c) = 0. Tõestus. Kuna f(x) on pidev lõigul [a, b], siis saavutab ta oma suurima ja vähima väärtuse sellel lõigul. Olgu M suurim väärtus ja m vähim väärtus. Kui M = m, siis on funktsioon lõigul [a, b] konstantne, st kõigi x [a, b] korral kehtib f(x) = M = m. Sellisel juhul on f(x) tuletis nullfunktsioon, st f(x) 0, ja teoreemi väide on täidetud iga c (a, b) korral. Edasi vaatleme juhtu, kui M m. Funktsioon võib oma absoluutse ekstreemumi saavutada kas lõigu [a, b] otspunktis või vahemikus (a, b). Funktsioon f(x) peab vähemalt ühe oma absoluutsetest ekstreemumitest (kas suurima või vähima väärtuse) saavutama vahemikus (a, b) asuvas punktis. Tähistame selle punkti c-ga. Kuna vahemikus (a, b) asuv absoluutne

Matemaatiline analüüs I
121 allalaadimist
thumbnail
14
doc

Kollokvium III

1. Algfunktsiooni definitsioon. Määramata integraali definitsioon. Määramata integraal kui tuletise ja diferentsiaali pöördoperaator. Funktsiooni f algfunktsiooniks nimetatakse funktsiooni F, mis rahuldab tingimust F'(x) = (x)= f(x). Definitsioon (määramata integraal) Avaldist kujul F(x) + C; kus F(x) on funktsiooni f (x) mingi algfunktsioon ja C on suvaline konstant (integreerimiskonstant), nimetatakse funktsiooni f (x) määramata integraaliks ja tähistatakse st . Määramata integraali tuletis on võrdne integreeritava funktsiooniga st ( )'= f(x). Tõestus: ( )'= (F(x)+C)'=F'(x)= f(x). d( )= ( )'dx = f(x)dx = F'(x)dx= dF(x). Operaatorit L:V->W nimetame lineaarseks kui on täidetud tingimused: a)L(f+g)= L(f) + L(g) kui f, g V (aditiivsus) b) L(cf) = cL(f) kui f V ja c R (homogeensus)

Matemaatiline analüüs
107 allalaadimist
thumbnail
15
docx

Matemaatika analüüsi II Kontrolltöö

f(x)-f(x1) 0 Vaatleme juhtu, kus funktsioonil on lokaalne maksimum, mistõttu peab kehtima võrratus järelikult On võimalik võtta -i -st paremalt või vasakult. Võtame ta vasakult. Jagame võrratuse selle negatiivse arvuga. Negatiivse arvuga jagamine muudab võrratust, Võrratus jääb ka siis kehtima, kui võtta temast piirväärtus piirprotsessis . Seega tuletise definitsiooni põhjal: Võtame -i -st paremalt Ja piirväärtuse Järeldub, et ja Mis tähendab, et see on võimalik ainult siis, kui 3. Sõnastada ja tõestada Rolle'i teoreem. Rolle'i teoreemi geomeetriline sisu. Sõnastada ja tõestada Cauchy teoreem. Sõnastada ja tõestada Lagrange'i teoreem. Lagrange'i teoreemi geomeetriline sisu. a

Matemaatiline analüüs 2
100 allalaadimist
thumbnail
42
docx

Määratud integraali ligikaudne arvutamine trapetsi valemiga.

Tallinna Tehnikaülikool Referaat Määratud integraali ligikaudne arvugtamine trapetsi valemiga. Veahinnangud. Näited. Tatjana Kruglova 142442IAPB Sisukord Määratud integraal.................................................................................................................................3 Pindfunktsioon ning selle tuletis........................................................................................................3 Kõverjoonelise trapetsi pindala..........................................................................................................4 Määratud integraali mõiste................................................................................................................5 Definitsioon 1..................................................................................

Matemaatiline analüüs 1
36 allalaadimist
thumbnail
55
pdf

Matemaatiline analüüs II loengukonspekt

MATEMAATLINE ANALÜÜS II 1. KORDSED INTEGRAALID Kordame kõigepealt mõningaid teemasid Matemaatlise analüüsi I osast. 1.1 Kahe muutuja funktsioonid Kui Tasndi R 2 mingi piirkonna D igale punktile x, y D seatakse ühesel viisil vastavusse arv z, siis öeldakse, et piirkonnas D on määratud kahe muutuja funktsioon z f x, y . Piirkoda D nimetataksefunktsiooni f määramispiirkonnaks. See on mingi piirkond xy-tasandil. Näide 1. Poolsfääri z 1 x2 y 2 määramispiirkonnaks on ring x 2 y2 1. Funktsiooni z ln x y määramispiirkonnaks on pooltasand y x (sirgest y x ülespoole jääv tasandi osa: vaata joonist). Kahe muutja funktsioon ise esitab pinda xyz-ruumis (ruumis R 3 ). Näide 2

Matemaatiline analüüs II
69 allalaadimist
thumbnail
3
docx

Matemaatiline analüüs 1

Arvutame lim(x0)?sinx/x?. Elementaarfunktsioon sinx/x ei ole x = 0 korral määratud (tekib määramatus y = f(x) - f(a) - funktsiooni muut kohal a . 0/0). Piirväärtuse arvutamisel kasutame l'Hospitali reeglit: Näitasime, et 27Olgu funktsioon y = f(x) diferentseeruv hulgas D. Siis on tema tuletis f hulgas D määratud funktsioon. Oletame, et f on samuti diferentseeruv hulgas D. Siis saame me arvutada funktsiooni f tuletise ehk funktsiooni f teise tuletise, mida tähistatakse f. Seda protseduuri võib jätkata

Matemaatiline analüüs 1
66 allalaadimist
thumbnail
13
doc

Kõrgema matemaatika eksam

kanooniline võrrand tasandil või ka sirge võrrand sihivektrori ja punkti järgi. Üldvõrrand - Sirge tõusuks nim selle sirge tõusunurga tangensit. Sirge tõusunurk on alati 0* ja 180* vahel. Kui sirge tõusunurk on alfa, siis selle sirge tõus k=tan alfa. Seega sirge tõusu saab leida vaid x- teljega mitteristuvate sirgete korral. Võrrand tõusu ja algordinaadi abil: y = kx + b Kui sirge üldvõrrandist avaldada muutuja y, siis saame võrrandi seega 22. Sirgete paralleelsuse ja ristseisu tunnused. Kahe sirge vastastikused asendid. Paralleelsuse tunnused: sihivektorid kollinearsed (+ kontrollin et ei ühti) Ristseisu tunnused: sihivektorid on risti. 23. Sirge kanoonilised ja parameetrilised võrrandid ruumis. Kanoonilised võrrandid: (x-x1) / sx = (y-y1) / sy = (z-z1) / sz =täh. t. Parameetrilised võrrandid: 24. Tasandi normaal. Tasandi üldvõrrand ruumis.

Kõrgem matemaatika
356 allalaadimist
thumbnail
20
docx

Kõrgem matemaatika II eksamimaterjal

koondub Arvrea tingimisi Kui rida koondub, aga ei koondu absoluutselt, siis nimetatakse seda rida koonduvus tingimisi koonduvaks D'Alambert'i |u ( n+1 )| { ¿1, siis rida koondub absoluutselt koonduvustunnus Kui leidub piirväärtus ¿ u ( n )¿ ¿ 1, siis rida hajub lim ¿ ¿1, siis ei saa otsustada n Cauchy { ¿1, siis rida koondub absoluutselt

Kõrgem matemaatika ii
91 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun