Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

Määratud integraal ja selle rakendused - sarnased materjalid

integraal, integraalsumma, algfunktsioon, piirväärtus, avaldis, integraalne, nullile, muutuja, integraalse, teoreem, ositi, integraalis, tuletis, tähega, summast, avaldise, osadeks, lõpmatu, integraalid, lõigud, newton, rajad, lõpppunkt, summat, pikim, lähenemisel, integraaliks, kusjuures, niisiis, saime, avaldist, konkreetsel, muutliku, analoogi
thumbnail
36
pdf

Matemaatiline analüüs

Matemaatiline analüüs 23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu ∆x suhtes, kui ∆x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. Funktsiooni muudu esitus: ∆y = f’(a)∆x + β , kus β = r(∆x)∆x Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu ∆ x suhtes, kui ∆ x läheneb nullile? (tõestada!). funktsiooni muut ∆y koosneb kahest liidetavast, millest esimene on diferentsiaal dy = f’(a)∆x ja teine on β. Mõlemad liidetavad on lõpmatult kahanevad protsessis ∆x → 0. Võrdleme neid suurusi ∆x suhtes

Matemaatiline analüüs 1
14 allalaadimist
thumbnail
18
docx

Matemaatiline analüüs KT2 vastused

x x1. Seega tuletise definitsiooni põhjal Järgnevalt olgu x punktist x1 paremal. Siis x - x1 > 0. Jagades võrratuse positiivse arvuga x - x1 saame Võtame piirväärtuse: Võrratused ja näitavad, et f(x1) 0 ja f(x1) 0. See on võimalik vaid siis, kui f(x1) = 0. Seega on lemma tõestatud juhul, kui x1-s on lokaalne miinimum. Analoogiliselt saab käsitleda ka juhtu, kui x1-s on lokaalne miinimum. 25. Sõnastada ja tõestada Rolle'i teoreem. Rolle'i teoreemi geomeetriline sisu. Sõnastada ja tõestada Cauchy teoreem. Sõnastada ja tõestada Lagrange'i teoreem. Lagrange'i teoreemi geomeetriline sisu. Rolle'i teoreem. Kui funktsioon f on lõigul [a, b] pidev, vahemikus (a, b) diferentseeruv ja rahuldab tingimust f(a) = f(b), siis leidub vahemikus (a, b) vähemalt üks punkt c nii, et f(c) = 0. Tõestus. Kuna f(x) on pidev lõigul [a, b], siis saavutab ta oma suurima ja vähima väärtuse sellel lõigul.

Matemaatiline analüüs I
121 allalaadimist
thumbnail
11
pdf

Määratud integraal

x 0 x Leidsime, et pindfunktsiooni tuletis võrdub pindala piirava kõvera lõppordinaadiga. 1 KÕVERJOONSE TRAPETSI PINDALA Kõverjoonse trapetsi abBA pindala S abBA = S ( b ) ehk pindala võrdub pindfunktsiooni väärtusega kohal x =b. Valem (1) näitab,et pindfunktsioon on üks funktsiooni y = f ( x ) algfunktsioonidest. Olgu y = F ( x ) mingi algfunktsioon funktsioonile y = f ( x ) Pindfunktsioon võib temast erineda ülimalt konstantse liidetava poolest S ( x ) = F ( x ) +C Pindfunktsiooni väärtus x = a korral on 0, x =a S axXA = 0 S ( a) = 0 S ( a) = F ( a) + C F ( a) + C = 0 C = -F ( a ) Leidsime C väärtuse, pannes kokku saame S ( x ) = F ( x ) - F ( a ) (2) Kõverjoonse trapetsi abBA pindala valem S abBA = F ( b ) - F ( a ) (3)

Matemaatika
66 allalaadimist
thumbnail
11
doc

Määratud integraal

x 0 x Leidsime, et pindfunktsiooni tuletis võrdub pindala piirava kõvera lõppordinaadiga. 1 KÕVERJOONSE TRAPETSI PINDALA Kõverjoonse trapetsi abBA pindala S abBA = P ( b ) ehk pindala võrdub pindfunktsiooni väärtusega kohal x =b. Valem (1) näitab,et pindfunktsioon on üks funktsiooni y = f ( x ) algfunktsioonidest. Olgu y = F ( x ) mingi algfunktsioon funktsioonile y = f ( x ) Pindfunktsioon võib temast erineda ülimalt konstantse liidetava poolest P( x ) = F ( x ) + C Pindfunktsiooni väärtus x = a korral on 0, x=a S axXA = 0 P( a ) = 0 P( a ) = F ( a ) + C F ( a ) + C = 0 C = -F ( a ) Leidsime C väärtuse P( x ) = F ( x ) - F ( a ) (2) Kõverjoonse trapetsi abBA pindala valem S abBA = P( b ) = F ( b ) - F ( a ) (3)

Kõrgem matemaatika
181 allalaadimist
thumbnail
3
docx

Matemaatiline analüüs 1

argumendi väärtusi, mille korral tuletis võrdub nulliga või lõplik tuletis puudub. Teoreem: Lokaalse ekstreemumi tarvilik tingimus. Kui funktsioonil f on punktis x 1 lokaalne ekstreemum, siis on x1 Järgnevalt olgu x punktist x1 paremal. Siis x - x1 > 0. Jagades võrratuse positiivse arvuga x - x1 saame selle funktsiooni kriitiline punkt. Funktsioonil (lk.88 joonis) on punktides koordinaatidega (a, f(a)), (b, f(b)), (c, f(c)) ja (d,

Matemaatiline analüüs 1
66 allalaadimist
thumbnail
2
pdf

Matemaailine analüüs I kollokvium III spikker

Kuna g(x) = O(1) (x[a,b]) F'(x) = (x)= f(x). Definitsioon (määramata integraal) Avaldist kujul F(x) + C; kus ja g(x)f(x) vaid punktis c ning () [, ] () = (1)( [, ]), siis F(x) on funktsiooni f (x) mingi algfunktsioon ja C on suvaline konstant () = =1 ( )+ (g( ) - f( )) = S(f) + (( ) - f( )) , kus (integreerimiskonstant), nimetatakse funktsiooni f (x) määramata integraaliks ja 0

Matemaatika analüüs I
139 allalaadimist
thumbnail
12
docx

Matemaatiline analüüs I 3. kollokviumi spikker

lim n→∞ S Πn= lim n→∞ ∑ f ( ξi ) xi ∈ ∈ ∈ Kui eksisteerib piirväärtus i=1 , mis ei L(g) kui f, g V (aditiivsus) b) L(cf) = cL(f) kui f V ja c R (homogeensus). max ∆ xi → 0 max ∆ xi →0 i i

Matemaatiline analüüs 1
24 allalaadimist
thumbnail
5
docx

Teine osaeksam, matemaatiline analüüs I, teooriaküsimused

Matemaatilise analüüsi (I) II osaeksami teooriaküsimused (Tallinnas õppivatele kaugõppijatele) 1. Funktsiooni muudu peaosa ja funktsiooni diferentsiaal. Sõltumatu muutuja diferentsiaal. Funktsiooni diferentsiaali valem. Ligikaudse arvutamise valem. Funktsiooni muut y koosneb kahest liidetavast, millest esimene [kui f ( x ) 0 ] on muudu niinimetatud peaosa, mis on võrdeline argumendi muuduga x . Korrutist f ( x ) x nimetatakse funktsiooni diferentsiaaliks ja tähistatakse sümboliga dy või df ( x ) . Sõltumatu muutuja x diferentsiaal dx ühtib tema muuduga x . dy

Matemaatika analüüs I
147 allalaadimist
thumbnail
21
docx

Matemaatiline analüüs 1, teine teooriatöö kordamisküsimused

23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana y ' =f ( a ) +r ( x ) x Korrutame saadud avaldise x-ga ja saame y=f ' ( a ) x+ , kus =r ( x ) x Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (Tõestada) ' lim f ( a ) x dy lim r ( x ) x =¿ x o = lim f ' ( a )=f ' ( a ) 0 x x x o lim = x o = lim r ( x ) =0 lim ¿ x o x x x o x o Loetleda diferentsiaali omadused 1

Matemaatika
10 allalaadimist
thumbnail
8
docx

Matemaatiline analüüs KT2

Öeldakse, et funktsioonil f on punktis x1 lokaalne miinimum, kui 1. funktsioon f on määratud punkti x1 mingis ümbruses (x1 - , x1 + ); 2. iga x (x1 - , x1 + ) korral kehtib võrratus f(x) f(x1). Funktsiooni lokaalseid maksimume ja miinimume nimetatakse selle funktsiooni lokaalseteks ekstreemumiteks. Fermat' lemma - Kui funktsioonil f on punktis x 1 lokaalne ekstreemum ja funktsioon on diferentseeruv selles punktis, siis f(x1) = 0. 22. Sõnastada Rolle'i teoreem (tõestust ei kusi). Rolle'i teoreemi geomeetriline sisu. Sõnastada Lagrange'i teoreem (tõestust ei kusi). Lagrange'i teoreemi geomeetriline sisu. Rolle'i teoreem. Kui funktsioon f on lõigul [a, b] pidev, vahemikus (a, b) diferentseeruv ja rahuldab tingimust f(a) = f(b), siis leidub vahemikus (a, b) vähemalt üks punkt c nii, et f(c) = 0. Geomeetriline sisu. See on järgmine

Matemaatiline analüüs
231 allalaadimist
thumbnail
40
docx

Määratud integraali ligikaudne arvutamine trapetsvalemiga

Tallinna Tehnikaülikool Määratud integraali ligikaudne arvutamine trapetsvalemiga Referaat Koostas: Denis Rästas 155552IAPB Õpperühm: IAPB15 Juhendaja: Gert Tamberg Tallinn 2016 1. MÄÄRATUD INTEGRAAL........................................................................................... 3 1.1. Pindfunktsioon ja tema tuletis..........................................................................3 1.2. Kõverjoonse trapetsi pindala............................................................................4 1.3. Määratud integraali mõiste.............................................................................. 6 1.4. Määratud integraali omadused..........................

Matemaatika
7 allalaadimist
thumbnail
16
docx

Matemaatiline analüüs 2 KT

f ( a) f ' '(a) 2 f ' ' ' ( a)  Pn(x) = f(a) + 1 ! (x-a) + 2! (x-a ¿ + 3! (x-a)3 f (n ) (a) + n! (x-a)n  Kui a = 0, siis nimetatakse Taylori polünoomi ka McLaurini polünoomiks. 22. Funktsiooni kasvamise ja kahanemise seos tuletise märgiga (sõnastada vastav teoreem, tõestust ei küsi). Olgu funktsioon f diferentseeruv vahemikus (a, b). Siis kehtivad järgmised väited: 1. Kui f’(x) > 0 iga x ∈ (a, b) korral, siis f on kasvav vahemikus (a, b). 2. Kui f’(x) < 0 iga x ∈ (a, b) korral, siis f on kahanev vahemikus (a, b) 23. Funktsiooni kriitilise punkti definitsioon. Panna kirja lokaalse ekstreemumi tarvilik tingimus (põhjendust ei küsi). Panna kirja funktsiooni lokaalsete ekstreemumite piisavad tingimused (põhjendusi ei küsi).

Matemaatika
14 allalaadimist
thumbnail
15
docx

Matemaatika analüüsi II Kontrolltöö

Matemaatilise analüüsi II Kontrolltöö 1. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. a. Teades, et ­argumendi muut kohal a -funktsiooni muut kohal a a.i. Nii me näitasime, et a.ii. Tähistades ja vahe järgmiselt a.iii. Kehtib võrratus: a.iv. Et avaldada väärtust kaudu peame kõigepealt avaldama suhte: a.v. Korrutades saadud avaldist saame: kus a.vi

Matemaatiline analüüs 2
100 allalaadimist
thumbnail
42
docx

Määratud integraali ligikaudne arvutamine trapetsi valemiga.

Tallinna Tehnikaülikool Referaat Määratud integraali ligikaudne arvugtamine trapetsi valemiga. Veahinnangud. Näited. Tatjana Kruglova 142442IAPB Sisukord Määratud integraal.................................................................................................................................3 Pindfunktsioon ning selle tuletis........................................................................................................3 Kõverjoonelise trapetsi pindala..........................................................................................................4 Määratud integraali mõiste..................................................

Matemaatiline analüüs 1
36 allalaadimist
thumbnail
14
doc

Kollokvium III

1. Algfunktsiooni definitsioon. Määramata integraali definitsioon. Määramata integraal kui tuletise ja diferentsiaali pöördoperaator. Funktsiooni f algfunktsiooniks nimetatakse funktsiooni F, mis rahuldab tingimust F'(x) = (x)= f(x). Definitsioon (määramata integraal) Avaldist kujul F(x) + C; kus F(x) on funktsiooni f (x) mingi algfunktsioon ja C on suvaline konstant (integreerimiskonstant), nimetatakse funktsiooni f (x) määramata integraaliks ja tähistatakse st . Määramata integraali tuletis on võrdne integreeritava funktsiooniga st ( )'= f(x). Tõestus: ( )'= (F(x)+C)'=F'(x)= f(x). d( )= ( )'dx = f(x)dx = F'(x)dx= dF(x). Operaatorit L:V->W nimetame lineaarseks kui on täidetud tingimused:

Matemaatiline analüüs
107 allalaadimist
thumbnail
37
docx

Matemaatiline analüüs l.

Üksühese funktsiooni mõiste. Olgu antud funktsioon y = f(x). Vastavalt funktsiooni definitsioonile on tegemist kujutisega, mis seab igale argumendi x väärtusele oma määramispiirkonnast vastavusse ühe kindla y väärtuse. Uksühese funktsiooni pöördfunktsioon. Üksühese funktsiooni y = f(x) pöördfunktsiooniks nimetatakse kujutist, mis seab igale f(x)-le funktsiooni f väärtuste hulgast vastavusse x-i. Pöördfunktsiooni avaldise saame, kui lahendame võrrandi y = f(x) muutuja x suhtes. Vahetavad pöördfunktsioonis kohad esialgse funktsiooni määramispiirkond ja väärtuste hulk. Olgu x = g(y) üksühese funktsiooni y = f(x) pöördfunktsioon. Siis funktsioonid f ja g kompenseerivad teineteist järgmises mõttes. g[f(x)] = x , f[g(y)] = y . Funktsiooni y = f(x) ja tema pöördfunktsiooni x = g(y) graafikud kattuvad xy-teljestikus. Kui aga pöördfunktsiooni x = g(y) avaldises muutujate x ja y kohad vahetada, st esitada ta kujul y = g(x), siis

Matemaatiline analüüs
484 allalaadimist
thumbnail
51
pdf

Enno Paisu konspekt

3) logaA(x) A(x) >0 arcsin A( x) 4) -1 A( x) 1 arccos A( x) Funktsiooni y=f(x) pöördfunktsiooniks nim. f-ni y=g(x), mis igale funktsiooni f väärtusele y seab vastavusse need argumendi x väärtused, mille korral y=f(x) Olgu funktsioonid y=f(x) ja y=g(x), siis väärtus y on teisendatud argumendi x liitfunktsiooniks ehk kompositsiooniks y=f[g(x)]=f*g(x) © 2001 - Ivari Horm ([email protected]), Toomas Sarv 1 Funktsiooni piirväärtus. Teoreemid piirväärtuste kohta (tõestusega). Arv a on funktsiooni y=f(x) piirväärtuseks tingimusel, et xx0, kui >0, () >0, et 0< x-x0< f(x)-a< Selleks, et funktsioonil y = f (x) oleks piirväärtus, kui xx0 on piisav ja tarvilik, et eksisteeriksid ühepoolsed piirväärtused ja et nad oleks võrdsed. lim f ( x) = lim f ( x) = a x x0 - 0 x x0 + 0 Teoreemid piirväärtuste kohta. Teoreem 1 Selleks, et funktsioonil oleks piirväärtus on piisav ja tarvilik, et

Matemaatiline analüüs
179 allalaadimist
thumbnail
51
pdf

Matemaatilise analüüsi konspekt

3) logaA(x) A(x) >0 arcsin A( x) 4) -1 A( x) 1 arccos A( x) Funktsiooni y=f(x) pöördfunktsiooniks nim. f-ni y=g(x), mis igale funktsiooni f väärtusele y seab vastavusse need argumendi x väärtused, mille korral y=f(x) Olgu funktsioonid y=f(x) ja y=g(x), siis väärtus y on teisendatud argumendi x liitfunktsiooniks ehk kompositsiooniks y=f[g(x)]=f*g(x) © 2001 - Ivari Horm ([email protected]), Toomas Sarv 1 Funktsiooni piirväärtus. Teoreemid piirväärtuste kohta (tõestusega). Arv a on funktsiooni y=f(x) piirväärtuseks tingimusel, et xx0, kui >0, () >0, et 0< x-x0< f(x)-a< Selleks, et funktsioonil y = f (x) oleks piirväärtus, kui xx0 on piisav ja tarvilik, et eksisteeriksid ühepoolsed piirväärtused ja et nad oleks võrdsed. lim f ( x) = lim f ( x) = a x x0 - 0 x x0 + 0 Teoreemid piirväärtuste kohta. Teoreem 1 Selleks, et funktsioonil oleks piirväärtus on piisav ja tarvilik, et

Matemaatiline analüüs
11 allalaadimist
thumbnail
11
doc

Matemaatiline analüüs - konspekt II

kumerusega. Jäävad üle vaid kaks võimalust: kas 1) f ` ` (x1) = 0 või 2) lõplik teist järku tuletis f ` ` (x1) puudub. Funktsiooni argumendi väärtusi mille korral kas teist järku tuletis võrdub nulliga või lõplik teist järku tuletis puudub nimetatakse selle funktsiooni teist järku kriitilisteks punktideks. 34. Joone graafiku asümtoodid: Asümptoodid. Definitsioon1. kui võrrandiga y=f(x) antud joone punkti P kaugenemisel lõpmatusse selle punkti kaugus mingist sirgest läheneb nullile, siis seda sirget nim. antud joone asümptoodiks. Kaldasümptoot. Valem: y=kx+b; Joone y=f(x) kaldasümptootide leidmiseks tuleb suurused a ja b määrata: juhul x- seosest lim x- (f(x)-kx-b)=0 millest saame, 1 et k= lim x- f(x)/x ^ b= lim x-(f(x)-kx); *juhul x+ seosest lim x+ (f(x)-kx-b)=0, millest saame, et k=lim x+ f(x)/x ^ b= lim x+(f(x)-kx). Kui

Matemaatiline analüüs
350 allalaadimist
thumbnail
4
doc

Matemaatiline analüüs - teooria spikker

27. Trigonomeetriliste avaldiste integreerimine. 28. Määratud integraal ja selle omadused. 1. Funktsioon. Määramispiirkond, väärtuste hulk. Me vaatleme integraali (sinx,cosx)dx Keskväärtusteoreem (tõestusega). Pöördfunktsioon. 1. Universaalne asendus tan x/2=t Olgu y=f(x) pidev lõigul [a,b] Jaotame lõigu n osaks punktidega 2. Funktsiooni piirväärtus. Teoreemid piirväärtuste x0=a, x1, x2,..,xn=b kohta (tõestusega). J={x0,x1,..,xn} lõigu [a,b] jaotus 3. Lõpmatult vähenevad suurused ja nende järk. Igal lõigukesel xi=xi-xi-1 i=1,2,..,n võtame punkti i =[xi-1,xi] 4

Matemaatiline analüüs
973 allalaadimist
thumbnail
16
docx

J. Kurvitsa teooria vastused

1. Kollokvium 1. Hulga mõiste. Järjestatud hulk. Tehted hulkadega. Arvuhulgad. Teoreem. Ei leidu ratsionaalarvu, mille ruut on 2 (tõestada). Tõkestatud hulgad (näide). Tõkestamata hulgad (näide). Hulk koosneb elementidest, kusjuures elemendid ei kordu ja nende järjestus ei ole kindlaks määratud. Järjestatud hulk koosneb samuti elementidest, kuid selles hulgas on iga kahe elemendi kohta võimalik öelda, kumb neist on eelnev, kumb järgnev. Tehted hulkadega: * Hulkade A ja B ühendiks ehk summaks nimetatakse hulka, mille moodustavad kõik kas

Matemaatiline analüüs
195 allalaadimist
thumbnail
156
pdf

Kõrgem matemaatika

. . . . . . . . . . . . . . . . 29 3.5 Põhilised elementaarfunktsioonid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 SISUKORD 3.6 Elementaarfunktsioonid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.7 Jadad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4 Funktsiooni piirväärtus ja pidevus 37 4.1 Jada piirväärtus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.2 Funktsiooni piirväärtuse mõiste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.3 Ühepoolsed piirväärtused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.4 Funktsiooni piirväärtuse omadused . . . . . . . . .

Kõrgem matemaatika
94 allalaadimist
thumbnail
32
doc

Matemaatika I küsimused ja mõisted vastustega

monotoonsed funktsioonid, tõkestatud funktsioonid). Tuua näiteid. .............................................. 7 6. Elementaarsed põhifunktsioonid, nende määramispiirkonnad, põhiomadused ja graafikud. .....7 7. Liitfunktsiooni mõiste, liitfunktsiooni määramispiirkond. Tuua näiteid. ....................................7 8. Pöördfunktsiooni mõiste; pöördfunktsiooni määramis- ja muutumispiirkond. Tuua näiteid. .....7 9. Muutuva suuruse piirväärtus, tõkestamatult kasvav ja tõkestamatult kahanev suurus. ...............8 10. Funktsiooni piirväärtus. Funktsiooni vasak- ja parempoolne piirväärtus. .................................9 11. Tõkestamatult kasvav funktsioon, tõkestamatult vähenev funktsioon. ................................... 10 12. Funktsiooni piirväärtuse aritmeetiliste tehetega seotud omadused. ........................................ 10 13

Matemaatika
118 allalaadimist
thumbnail
8
doc

Kordamisküsimused aines "Matemaatiline analüüs I"

Funktsioon Funktsioon ­ Kui hulga x igale elemendile on mingi eeskirjaga seatud vastavusse hulga y kindel elementi ,siis öeldaks, et hulgale x on defineeritud funktsioon. Funktsiooni y argumendiks e sõltumatuks muutujaks nimetatakse muutujat x . Sõltuvaks muutujaks nimetatakse funktsiooni y Funktsiooni määramispiirkond- Funktsiooni y määramispiirkonnaks nimetatakse argumendi x muutumispiirkonda, see on nende x väärtuste hulk, millas funktsiooni avaldis on arvutatav. Funktsioonide liigid- Funktsioone võime jagada: 1. Paaris ja paaritu funktsioonid · Paarisfunktsioon on funktsioon, kus iga x-i korral f(x)= f(-x)(sümmeetriline y-telje suhtes). · Paaritu funktsioon on funktsioon, kus iga x-i korral f(x)= - f (x) ( muutuma peavad kõik märgid) (sümmeetriline 0 punkti suhtes). 2. Perioodiline funktsioonid

Matemaatika analüüs I
159 allalaadimist
thumbnail
2
doc

Mat analüüs 1

1. Määratud integraali mõiste. Olgu antud f(x) [a;b] ja geom. tõlgenduse jaoks f(x)>=0. a=x0 piirväärtus 0 Sn'ist ja see ei sõltu kuidas on lõik [a;b] jaotatud osalõikudeks ega sellest kuidas on valitud (k) osalõikudel, siis seda piirväärtust nim. f(x) määratud b integraaliks rajades a'st b'ni ja tähistatakse f ( x)dx a 2. Määratud integraali põhiomadused. b n f ( x)dx = lim f (k )xk

Matemaatiline analüüs
318 allalaadimist
thumbnail
20
docx

Matemaatiline analüüs II kontrolltöö

Matemaatiline analüüs II kontrolltöö Punktid 23-45 23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile?(Tõestada) Loetleda diferentsiaali omadused. a. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana b. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile?(Tõestada) c. Loetleda diferentsiaali omadused c.1. c.2. c.3. c.4. c.5. 24. Funktsiooni lokaalsete ekstreemumite definitsioonid

Matemaatiline analüüs
122 allalaadimist
thumbnail
39
pdf

Matemaatiline analüüs I konspekt -Tõkestatud hulgad

hulga X punkte kui ka neid punkte, mis ei kuulu hulka X . Sisepunkt ei saa olla rajapunkt. Sisepunkt on alati kuhjumispunkt. Rajapunkt võib olla kuhjumispunkt. 1 Kordamine matemaatilise analüüsi I eksamiks matemaatika-informaatika teaduskonnas 04/05 õ.a Funktsioon, tema graafik Olgu X mingi reaalarvude hulk. Kui x tähendab mis tahes arvu hulgast X , siis öeldakse, et x on muutuv suurus ehk muutuja hulgas X . Iga arvu x X nimetatakse muutuja x väärtuseks. Definitsioon: Kui igale arvule x X on mingi eeskirja f abil seatud vastavusse üks reaalarv y , siis öeldakse, et hulgas X on määratud funktsioon y = f ( x ) ja kirjutatakse: y = f ( x ) , x X . Muutujat x nimetatakse funktsiooni argumendiks ehk sõltumatuks muutujaks ja muutujat y tema sõltuvaks muutujaks. Hulka X nimetatakse funktsiooni määramispiirkonnaks ja hulka

Matemaatiline analüüs I
73 allalaadimist
thumbnail
3
docx

Kollokvium integraal

1. Määramispiirkond; 2. Graafiku sümmeetria; 3. Perioodilisus ( paaris või paaritu); 4. Katkevuspunktid ja pidevuspiirkonnad; 5. Nullkohad ja negatiivsus- ja positiivsuspiirkonnas; 6. Lokaalsed ekstreemumid ja range monotoonsuse piirkond; 7. Graafiku käänupunktid ja kumerus- ning nõgususpiirkonnad; 8. Graafiku püstasümptoodid; 9. Graafiku kaldasümptoodid; 10. Skitseerime graafiku. Integraal Def1 Öeldakse, et funktsiooni F ( x ) on funktsiooni f ( x ) algfunktsioon hulgal X, kui iga x X korral . Lause1 Kui funktsioon F1 ( x ) ja F2 ( x ) on funktsiooni f ( x ) algfunktsioonid, siis leidub selline reaalarv c, nii et F1 ( x ) = F2 ( x ) + c. Def2 Avaldist kujul F ( x ) + C, kus F ( x on funktsiooni f ( x ) mingi algfunktsioon ja C on

Matemaatiline analüüs
92 allalaadimist
thumbnail
16
doc

Kordamisküsimused - vastused

..,xm), määramispiirkonnaga D, graafikuks nimetatakse järgmist ruumi Rm+1 alamhulka ={(x1,x2,...,xm,f(x1,x2,...,xm))||P(x1,x2,...,xm)D} 2. Nivoojooned ja pinnad Kahemuutuja funktsiooni z=f(x,y) nivoojooneks nimetatakse joont, mille moodustavad piirkonna D punktid (x,y) mille korral f(x,y)=C, kus C on etteantud konstant Skalaarvälja f ehk funktsiooni f nivoopinnaks nimetatakse pinda, mis koosneb piirkonna D punktidest (x,y,z) mille korral f(x,y,z)=C, kus C on etteantud konstant. 3. Mitme muutuja funktsiooni piirväärtus ja pidevus Mitmemuutuja funktsiooni piirväärtus m-muutuja funktsioonil f on piirväärtus b punktis A kui suvalises piirprotsessis PA, mis rahuldab tingimust PA, funktsiooni väärtus f(P) läheneb arvule b Mitmemuutuja funktsiooni pidevus Olgu antud mitmemuutuja funktsioon z=f(P) määramispiirkonnaga D. Funktsiooni f nimetatakse pidevaks punktis A kui AD; eksisteerib piirväärtus lim f ( P ) ; lim f ( P ) = f ( A) PA PA

Matemaatiline analüüs 2
511 allalaadimist
thumbnail
10
doc

Matemaatiline analüüs I konspekt - funktsioon

"Matemaatiline analüüs I" Funktsioon Funktsioon- Kui muutja x igale väärtusele piirkonnas X vastab muutuja y kindel väärtus, siis öeldakse, et y on muutuja x funktsioon piirkonnas X. Sõltumatu muutuja on x, sõltuv y Funktsiooni määramispiirkond-Funktsiooni y määramispiirkonnaks nimetakse argumendi x muutumispiirkonda. Funktsioonide liigid- 1. Paaris funktsioon-rahuldab tingimust f(x)=f(-x) ja see on sümmeetriline y-telje suhtes. (Nt:y=x2) 2.Paaritu funktsioon-rahuldab tingimust f(-x)=-f(x) ja see on sümmetrialine 0 punkti suhtes. (y=sinx) 3.Perioodilised funktsioonid- rahuldab tingimust f(x+T)=f(x), T on periood. 4

Matemaatiline analüüs
259 allalaadimist
thumbnail
22
doc

Matemaatiline analüüs I - kordamine eksamiks (ainekava järgi koostatud konspekt)

Funktsiooni y = f ( x ) , x X võib alati esitada parameetrilised kujul, näiteks: t T = X y = f (t) Vastupidine esitus, s.o. üleminek parameetriliselt kujult ilmutatud kujule ei ole alati teostatav. 5. Esitus ilmutamata kujul, s.o. võrrandi F ( x, y ) = 0 abil. Liitfunktsioon - kui y=f(u), kus u=g(x), siis öeldakse, et y on muutuja x suhtes liitfunktsioon ja kirjutatakse y=f[g(x)] Pöördfunktsioon ­ Paaris- ja paaritudfunktsioonid : *paaris ­ kui iga x X korral on f(-x)=f(x), siis nimetatakse funktsiooni f paarisfunktsiooniks piirkonnas X *paaritu ­ kui iga x X korral on f(-x)=-f(x), siis nimetatakse funktsiooni f paarituks funktsiooniks piirkonnas X Perioodiline funktsioon ­ funktsiooni f nimetatakse perioodiliseks piirkonnas X ja arvu 0 tema perioodiks, kui f ( x + ) = f ( x ) iga x X korral.

Matemaatiline analüüs i
776 allalaadimist
thumbnail
1
doc

Matemaatiline analüüs 1 (2 teooria töö)

< f(x) < f(x2). Kui funktsioon on rangelt kasvav punktis x, siis leidub selline 0, et 0|x| --y/x0 Funktsiooni y = f(x) nimetatakse rangelt kahanevaks punktis x, kui leidub selline positiivne arv , et suvaliste x1 (x-,x) ja x2 (x; x + ) korral f(x1) f(x) f(x2). Kui funktsioon on rangelt kasvav punktis x, siis leidub selline 0, et 0|x| --y/x0 Fermat' teoreem väidab, et Kui F-il f(x) on punktis a lokaalne ekstreemum ja see f f(x) on diferentseeruv selles punktis, siis f-i tuletis punktis a=0 e f'(a)=0 Punkti a nim diferentseeruva f-i statsionaarseks punktiks, kui f'(a)=0 Punkti a nim f-i kriitiliseks punktiks ,kui a on statsionaare punkt või punktis a ei leidu f-il tuletist Kui punkt a on f-i statsionaarne punkt ja f''(x) on pidev punktis a ning f''(a)0, siis f-il on punktis a range lokaalne ekstreemum. Kui f''(a)0--lok max, f''(a)0--lok min

Matemaatiline analüüs
261 allalaadimist
thumbnail
14
pdf

Matemaatiline analüüs II

n=1: R1={P(x1) | x1 R} geom. sirge n=2: R2={P(x1,x2) | x1,x2 R} geom. tasand n=3: R3={P(x1,x2,x3) | x1,x2,x3 R} geom. ruum Punkt A on piirkonna D sisepunkt, sel korral kui tal leidub ümbrus, mis sisaldub piirkonnas D. Punkt A on piirkonna D rajapunkt sel korral kui iga tema ümbrus sisaldab nii piirkonna D kui ka piirkonda mittekuuluvaid punkte. Piirkond D on lahtine, kui ta koosneb sisepunktidest. Piirkond D on kinnine, kui ta koosneb nii sise- kui ka rajapunktidest. Mitme muutuja funktsiooni mõiste Def: nMF f:RnR:P(x1,...,xn) Rn a w=f(P) f(x1,...,xn) R Kujutlus, mis seab n-mõõtmelise ruumi punktidele P vastavusse lõpliku reaalarvu w=f(P), nim n- muutuja funktsiooniks. Geom ­ hüperpind n+1-mõõtmelises ruumis. Füüsikaliselt on nMF skalaarväli. Def: funktsiooni w=f(P), P Rn MP-ks nim nende punktide hulka, mille puhul funktsiooni väärtus on lõplik. MP={P(x1,...,xn) Rn | w=f(P) f(x1,...,xn) < } Rn

Matemaatiline analüüs 2
336 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun