Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Määramata integraal - sarnased materjalid

tuletis, algfunktsioon, diferentsiaal, integraal, lõpmata, reaalarvu, tuletised, algfunktsioonid, reaalarvude, teoreem, nullile, määramispiirkond, integraalide, integraaliga, tehte, const, piirväärtus, lähenemisel, real, tuletiste, integreerimine, asjale, definitsioonid, uurime, ülaltoodud, lisanduv, integraaliks, avaldist, suvaline, liidetavate
thumbnail
7
pdf

Määramata integraalid

Määramata integraalid Õppekirjandus: [1] Abel, E., Kokk, K. Kõrgem matemaatika (Harjutusülesanded). EMS, Tartu, 2003. [2] Lõhmus, A., Petersen, I., Roos, H. Kõrgema matemaatika ülesannete kogu. "Valgus", Tallinn, 1982. [3] Loone, L., Soomer, V. Matemaatilise analüüsi algkursus. "TÜ Kirjastus", Tartu, 2006. [4] Tõnso, T., Veelmaa, A. Matemaatika XII klassile. "Mathema", Tallinn, 1995. [5] Piskunov, N. Diferentsiaal- ja integraalarvutus. "Valgus", Tallinn, 1981. 3.1 Algfunktsioon ja määramata integraal Kursuse eelnevas osas käsitlesime ühe muutuja funktsiooni y = f (x) tuletise y = f (x) leid- misega seotud küsimusi. Teame, et funktsiooni f (x) = 2x tuletis on f (x) = 2 ja funktsiooni f (x) = sin x tuletis on f (x) = cos x. Vaatleme nüüd vastupidist ülesannet. Olgu antud funktsioon y = f (x). Kuidas leida sellist funktsiooni y = F (x), mille tuletiseks oleks antud funktsioon y = f (x), st kuidas leida funktsiooni y = F (x), kui on teada, et F (x) = f (x)?

Kõrgem matemaatika
172 allalaadimist
thumbnail
36
pdf

Matemaatiline analüüs

Matemaatiline analüüs 23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu ∆x suhtes, kui ∆x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. Funktsiooni muudu esitus: ∆y = f’(a)∆x + β , kus β = r(∆x)∆x Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu ∆ x suhtes, kui ∆ x läheneb nullile? (tõestada!). funktsiooni muut ∆y koosneb kahest liidetavast, millest esimene on diferentsiaal dy = f’(a)∆x ja teine on β. Mõlemad liidetavad on lõpmatult kahanevad protsessis ∆x → 0. Võrdleme neid suurusi ∆x suhtes. Esiteks, eelduse f’(a)  0 põhjal saame lim dy ∆x= lim f’(a)/∆x* ∆x= lim f’(a) = f(a)  0. ∆x→0 ∆x→0 ∆x→0 Teiseks kehtib

Matemaatiline analüüs 1
14 allalaadimist
thumbnail
4
doc

Matemaatiline analüüs - teooria spikker

27. Trigonomeetriliste avaldiste integreerimine. 28. Määratud integraal ja selle omadused. 1. Funktsioon. Määramispiirkond, väärtuste hulk. Me vaatleme integraali (sinx,cosx)dx Keskväärtusteoreem (tõestusega). Pöördfunktsioon. 1. Universaalne asendus tan x/2=t Olgu y=f(x) pidev lõigul [a,b] Jaotame lõigu n osaks punktidega 2. Funktsiooni piirväärtus. Teoreemid piirväärtuste

Matemaatiline analüüs
973 allalaadimist
thumbnail
10
doc

Matemaatiline analüüs I konspekt - funktsioon

Pöördfunktsioon Olgu y=f(x) mingi funktsioon, kus x on argument ja y funktsioon.Kui lahendada see võrrand x suhtes, samme x=p(y). Nende graafikud on samad. Tuleb vahetada argumendi ja funktsiooni tähistused saame funktsiooni y=p(x) Pöördfunktsiooni graafik on sümmeetriline algfunktsiooni graafikuga esimese ja kolmanda veeerandi nurgapoolitaja suhtes.(y=x2 y= -+ x ) Piirväärtus Lõpmata väike suurus, selle omadused. Muutuvat suurust, mille piirväärtus on null, nimetakse lõpmata väikseks. Omadused: Lõpliku arvu lõpmata väikeste suuruste summa on lõpmata väike suurus Tõkestatud muutuva suuruse ja lõpmata väikese suuruse korrutis on lõpmata väike suurus Lõpliku arvu lõpmata väikeste suuruste korrutis on lõpmata väike suurus. Arv e Arv e=2,71828... on irratsionaalarv, selle väärtust ei saa täpselt esitada. Logaritm alusel e, st logaritmi logex nim naturaallogaritmiks ja tähistatakse lnx. Piirväärtuse arvutamine

Matemaatiline analüüs
259 allalaadimist
thumbnail
37
docx

Matemaatiline analüüs l.

Matematiline analüüs l. Jaan Jaano 1. Arvtelje mõiste. Reaalarvu absoluutväärtus. Loetleda absoluutväärtuse omadused. Reaalarvude ja lõpmatuste ümbrused. Tõkestatud hulga definitsioon. Arvtelje mõiste. Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Võib väita, et igale arvtelje punktile vastab üks ja ainult üks reaalarv ja vastupidi: igale reaalarvule vastab üks ja ainult üks arvtelje punkt. Absoluutväärtuse mõiste. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: |a| = a kui a 0 -a kui a < 0 . Reaalarvu a absoluutväärtus |a| on punkti a ja nullpunkti vahelist kaugust arvteljel. Absoluutväärtuse omadused: 1. | - a| = |a| 2. |ab| = |a| |b| 3. |a + b| |a| + |b| 4. |a - b| | |a| - |b| | Reaalarvude ja lõpmatuste ümbrused. Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a - , a + ), kus > 0 on ümbruse raadius.

Matemaatiline analüüs
484 allalaadimist
thumbnail
13
doc

Kõrgema matemaatika eksam

reamaatriksi ja maatriksi B k-nda veerumaatriksi vastavad elemendid ja saadud korrutised liita. Nt 1: Nt 2: · Maatriksi transponeerimine: transponeeritud maatriks on maatriks AT, mille veergudeks on maatriksi A vastavad read. 3. Determinandi mõiste, järk, tähistused. Miinor, alamdeterminant. Igale ruutmaatriksile saab vastavusse seada ühe reaalarvu, mis leaitakse ühe ja sama algoritmi järgi ruutmaatriksi elementide abil. Saadud arvu nim selle ruutmaatriksi determinandiks. Täh | A|. Ruutmaatriksi A järku nim ka determinandi järguks. n-järku determinandi mingi elemendi aij miinoriks Mij nim sellist (n-1)-järku determinanti, mis tekib, kui antud determinandist eemaldada rida ja veerg, kus paikneb vaadeldav element. n-järku determinandi mingi elemendi aij alamdeterminandiks nim arvu Aij=(-1)i+j Mij kus Mij on

Kõrgem matemaatika
356 allalaadimist
thumbnail
5
docx

Teine osaeksam, matemaatiline analüüs I, teooriaküsimused

Matemaatilise analüüsi (I) II osaeksami teooriaküsimused (Tallinnas õppivatele kaugõppijatele) 1. Funktsiooni muudu peaosa ja funktsiooni diferentsiaal. Sõltumatu muutuja diferentsiaal. Funktsiooni diferentsiaali valem. Ligikaudse arvutamise valem. Funktsiooni muut y koosneb kahest liidetavast, millest esimene [kui f ( x ) 0 ] on muudu niinimetatud peaosa, mis on võrdeline argumendi muuduga x . Korrutist f ( x ) x nimetatakse funktsiooni diferentsiaaliks ja tähistatakse sümboliga dy või df ( x ) . Sõltumatu muutuja x diferentsiaal dx ühtib tema muuduga x . dy

Matemaatika analüüs I
147 allalaadimist
thumbnail
21
docx

Matemaatiline analüüs 1, teine teooriatöö kordamisküsimused

23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana y ' =f ( a ) +r ( x ) x Korrutame saadud avaldise x-ga ja saame y=f ' ( a ) x+ , kus =r ( x ) x Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (Tõestada) ' lim f ( a ) x dy lim r ( x ) x =¿ x o = lim f ' ( a )=f ' ( a ) 0 x x x o lim = x o = lim r ( x ) =0 lim ¿ x o x x x o x o

Matemaatika
10 allalaadimist
thumbnail
26
doc

Matemaatiline analüüs I - kordamine eksamiks

MATEMAATILINE ANALÜÜS I § 1 REAALARVUD JA FUNKTSIOONID 1. Reaalarvu mõiste Tähistame sümboliga N kõigi naturaalarvude hulga, st N = {1, 2, 3,...} ja sümboliga Z kõigi täisarvude hulga, st Z = {...,­3,­2,­1, 0, 1, 2, 3,...}. p Ratsionaalarvudeks nimetatakse arve kujul q , kus p ja q on täisarvud, q 0. Kõigi ratsionaalarvude hulga tähistame sümboliga Q. Ratsionaalarvudeks on parajasti need

Matemaatiline analüüs i
687 allalaadimist
thumbnail
8
docx

Matemaatiline analüüs I 2. teooria KT vastused

TÕESTUSED, TULETUSKÄIGUD, PÕHJENDUSED!!! 23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana y = f'(a)x + , kus = r(x)x Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). funktsiooni muut y koosneb kahest liidetavast, millest esimene on diferentsiaal dy = f'(a)x ja teine on . M~olemad liidetavad on l~opmatult kahanevad protsessis x 0. V~ordleme neid suurusi x suhtes. Esiteks, eelduse f'(a) 0 p~ohjal saame lim dy x= lim f'(a)/x* x= lim f'(a) = f(a) 0. x0 x0 x0 Teiseks kehtib lim / x = lim r(x)x /x = lim r(x) = 0. x0 x0 x0 N¨aeme, et esimene liidetav, so diferentsiaal dy on sama j¨arku l~opmatult kahanev suurus kui

Matemaatika
47 allalaadimist
thumbnail
8
doc

Kordamisküsimused aines "Matemaatiline analüüs I"

Funktsiooni y = f(x) pöördfunktsiooniks nimetatakse funktsiooni y =( x ) .Pöördfunktsiooni graafik on sümmeetriline algse funktsiooni graafikuga, sirge y=x suhtes. Teineteise pöördfunktsioonideks on: eksponent- ja logaritmfunktsioon , tirgonomeetrilised ja arkusfunktsioonid. Piirväärtus Lõpmata väike suurus, selle omadused- Muutuvat suurust, mille piirväärtus on null, nimetatakse lõpmata väikeseks suuruseks. Lõpmata väikese suuruse omadused: 1. Lõpmata väikeste suuruste summa on lõpmata väike(0+0=0) 2. Tõkestatud suuruse ja lõpmata väikese suuruse korrutis on lõpmata väike (A*0=0) 3. Lõpmata väikeste suuruste korrutis on ka lõpmata väike (0*0=0) 1 Lõpmata väikesi suurusi ja nimetatakse sama järku lõpmata väikesteks suurusteks, kui lim on lõplik nullist erinev suurus. Lõpmata väikeseid suurusi nimetatakse ekvivalentseteks,

Matemaatika analüüs I
159 allalaadimist
thumbnail
7
doc

Konspekt

vahemikus (a,b), kui F ( x) = f ( x) iga x (a,b) korral. x4 Näide. Funktsiooni y= x 3 algfunktsiooniks on funktsioon y = , üldiselt iga 4 x4 funktsioon kujul y = + C , kus C on suvaline konstant. 4 Üldavaldus. Funktsiooni f kõik algfunktsioonid F avalduvad kujul F(x) +C, kus F on funktsiooni f mingi algfunktsioon, C ­ suvaline konstant. Definitsioon 17. Funktsiooni f kõikide algfunktsioonide üldavaldist F(x) +C, kus F on funktsiooni f mingi algfunktsioon, C ­ suvaline konstant, nimetatakse funktsiooni f määramata integraaliks. Funktsiooni f määramata integraal tähistatakse sümboliga f ( x ) dx. Seega f ( x)dx = F ( x) + C F ( x) = f ( x).

Matemaatiline analüüs
87 allalaadimist
thumbnail
32
doc

Matemaatika I küsimused ja mõisted vastustega

ühepoolsed piirväärtused f ( a+) = lim f(x); x a+ ja f( a- ) = lim f(x); x a - nimetatakse 1. liiki katkevuspunktiks. ( hüppekoht, kõrvaldatav katkevuskoht, ................................................... 3 17. Teist liiki katkevuspunkt - arvu a nimetatakse funktsiooni y = f(x) teist liiki katkevuspunktiks, kui lim f(x); x a - on lõpmatu või ei eksisteeri ............................................ 4 20. Diferentseeruv funktsioon - kui funktsioonil y = f(x) on tuletis punktis x = x0, siis ütleme, et funktsioon on diferentseeruv punktis x0. Kui funktsioon on aga diferentseeruv mingi piirkonna igas punktis, öeldakse, et funktsioon on diferentseeruv selles piirkonnas. ..................................... 4 1. Arvuhulgad: naturaal-, täis-, ratsionaal-, reaal- ja kompleksarvud. Nende omadused. ...............6 2. Reaalarvu absoluutväärtus, absoluutväärtuse omadused. ............................................................6 Absoluutväärtuse omadused..

Matemaatika
118 allalaadimist
thumbnail
18
docx

Matemaatiline analüüs KT2 vastused

23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. Funktsiooni muudu peaosa ja jääkliige. Olgu antud funktsioon, mis on diferentseeruv punktis a. Eeldame, et f(a)0 kasutades mõisteid: x = x - a - argumendi muut kohal a y = f(x) - f(a) - funktsiooni muut kohal a . Näitasime, et Seega kui tähistame ja f'(a) vahe järgmiselt : Kehtib võrdus Püüame avaldada funktsiooni muutu y argumendi muudu x kaudu. Selleks

Matemaatiline analüüs I
121 allalaadimist
thumbnail
22
docx

Kõrgem matemaatika 1 kordamisküsimused 2017/2018

kus on ühikmaatriks 6. Lihtsamad maatriksvõrrandid. A*X=B lahendus: X = A-1*B või X*A=B lahendus: : X = B*A-1 7. Võrrandisüsteemi kordajad, vabaliikmed, lahend. Süsteemi maatriks ja laiendatud maatriks. Lahend teostab Gaussi või Crameri meetodi abil, näiteks: 8. Süsteemi lahendamine Crameri valemitega. 9. Maatriksi miinor. Maatriksi astak. Maatriksi ridade ja veergude elementaarteisendused. Maatriksi rea juhtelement. Kronecker-Capelli teoreem Miinor - Mij nimetatakse determinandi , mille saame maatriksi A determinandist i-nda rea ja j-inda veeru eemaldamisel Igale nullmaatriksist erinevale maatriksile pannakse vastavusse sellega üheselt määratud naturaalarv ­ maatriksi astak. Leiame maatriksi astakut maatriksi elementaarteisenduste abil. Maatriksi astak ei muutu, kui maatriksile rakendada järgmisi teisendusi (maatrikselementaarteisendused): 1. maatriksi kahe rea ( või veeru )

Kõrgem matemaatika
135 allalaadimist
thumbnail
3
docx

Matemaatiline analüüs 1

Arvutame lim(x0)?sinx/x?. Elementaarfunktsioon sinx/x ei ole x = 0 korral määratud (tekib määramatus y = f(x) - f(a) - funktsiooni muut kohal a . 0/0). Piirväärtuse arvutamisel kasutame l'Hospitali reeglit: Näitasime, et 27Olgu funktsioon y = f(x) diferentseeruv hulgas D. Siis on tema tuletis f hulgas D määratud funktsioon. Oletame, et f on samuti diferentseeruv hulgas D. Siis saame me arvutada funktsiooni f tuletise ehk funktsiooni f teise tuletise, mida tähistatakse f. Seda protseduuri võib jätkata

Matemaatiline analüüs 1
66 allalaadimist
thumbnail
10
docx

Matemaatiline analüüs I

1. Sõnastada ja tõestada piirväärtusteoreem kahe funktsiooni summa piirväärtuse arvutamiseks protsessis x +. Teoreem (1): Kahe, kolme, üldiselt lõpliku hulga muutuvate suuruste algebralise summa piirväärtus võrdub nende muutuvate suuruste piirväärtuste algebralise summaga. lim(u1 + u2 +....) = lim u1 + lim u2 + ... Tõestus: Tõestan teoreemi kahe funktsiooni liitmise korral. Olgu lim f(x) = A ja lim g(x) = B (Vaatlen mõlemaid protsesse piirprotsessis x +)

Matemaatiline analüüs
354 allalaadimist
thumbnail
8
docx

Matemaatiline analüüs KT2

20. Esitada funktsiooni muut diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? Tõestada ei ole vaja. Funktsiooni muudu peaosa ja jääkliige. Olgu antud funktsioon, mis on diferentseeruv punktis a. Eeldame, et f (a)0. Valemist näeme, et funktsiooni muut y koosneb kahest liidetavast, millest esimene on diferentsiaal dy = f(a)x ja teine on . Mõlemad liidetavad on lõpmatult kahanevad protsessis x 0. Näeme, et esimene liidetav, so diferentsiaal dy on sama järku lõpmatult kahanev suurus kui x ja teine liidetav on kõrgemat järku lõpmatult kahanev suurus x suhtes. Järelikult väikese x korral hakkab diferentsiaal funktsiooni muudu avaldises domineerima. Seetõttu võime lugeda diferentsiaali dy funktsiooni muudu peaosaks. Jääkliikme võib väikese x korral funktsiooni muudu avaldises ära jätta

Matemaatiline analüüs
231 allalaadimist
thumbnail
16
docx

J. Kurvitsa teooria vastused

1. Kollokvium 1. Hulga mõiste. Järjestatud hulk. Tehted hulkadega. Arvuhulgad. Teoreem. Ei leidu ratsionaalarvu, mille ruut on 2 (tõestada). Tõkestatud hulgad (näide). Tõkestamata hulgad (näide). Hulk koosneb elementidest, kusjuures elemendid ei kordu ja nende järjestus ei ole kindlaks määratud. Järjestatud hulk koosneb samuti elementidest, kuid selles hulgas on iga kahe elemendi kohta võimalik öelda, kumb neist on eelnev, kumb järgnev. Tehted hulkadega: * Hulkade A ja B ühendiks ehk summaks nimetatakse hulka, mille moodustavad kõik kas

Matemaatiline analüüs
195 allalaadimist
thumbnail
142
pdf

Matemaatilise analüüsi konspekt TTÜ's

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.8 L~opmatult kahanevate ja l~opmatult kasvavate suuruste v~ordlemine. 43 2.9 Funktsiooni pidevus. Katkevuspunktide liigitus. . . . . . . . . . . 45 ¨ 2.10 Uhepoolne pidevus. Pidevus hulkadel. Elementaarfunktsioonide pidevus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.11 L~oigul pidevate funktsioonide omadusi. . . . . . . . . . . . . . . . 52 3 Tuletis ja diferentsiaal 57 3.1 Tuletise, diferentseeruva funktsiooni ja diferentsiaali m~oisted. . . 57 3.2 N¨aiteid tuletiste kohta rakendustes. . . . . . . . . . . . . . . . . . 60 3.3 Tuletiste arvutamise p~ohireeglid . . . . . . . . . . . . . . . . . . . 61 3.4 Ilmutamata funktsiooni, p¨o¨ordfunktsiooni ja parameetrilise funk- tsiooni diferentseerimine. . . . . . . . . . . . . . . . . . . . . . . . 62

Matemaatiline analüüs
47 allalaadimist
thumbnail
142
pdf

Matemaatiline analüüs I

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.8 L~opmatult kahanevate ja l~opmatult kasvavate suuruste v~ordlemine. 43 2.9 Funktsiooni pidevus. Katkevuspunktide liigitus. . . . . . . . . . . 45 ¨ 2.10 Uhepoolne pidevus. Pidevus hulkadel. Elementaarfunktsioonide pidevus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.11 L~oigul pidevate funktsioonide omadusi. . . . . . . . . . . . . . . . 52 3 Tuletis ja diferentsiaal 57 3.1 Tuletise, diferentseeruva funktsiooni ja diferentsiaali m~oisted. . . 57 3.2 N¨aiteid tuletiste kohta rakendustes. . . . . . . . . . . . . . . . . . 60 3.3 Tuletiste arvutamise p~ohireeglid . . . . . . . . . . . . . . . . . . . 61 3.4 Ilmutamata funktsiooni, p¨o¨ordfunktsiooni ja parameetrilise funk- tsiooni diferentseerimine. . . . . . . . . . . . . . . . . . . . . . . . 62

Matemaatika
42 allalaadimist
thumbnail
24
pdf

MATEMAATILINE ANALÜÜS I. KORDAMISKÜSIMUSED

kui 𝑥1 < 𝑥2 , 𝑠𝑖𝑖𝑠 𝑓(𝑥1 ) < 𝑓(𝑥2) Funktsioon f on piirkonnas X kahanev, kui selles piirkonnas igale suuremale argumendi väärtusele vastab väiksem funktsiooni väärtus, s.t. kui 𝑥1 < 𝑥2, 𝑠𝑖𝑖𝑠 𝑓(𝑥1 ) > 𝑓(𝑥2 ) Funktsioon f on piirkonnas X konstantne, kui selles piirkonnas igale suuremale argumendi väärtusele vastab võrdne funktsiooni väärtus, s.t. kui 𝑥1 < 𝑥2, 𝑠𝑖𝑖𝑠 𝑓(𝑥1) = 𝑓(𝑥2) Kui funktsiooni f(x) tuletis lõigu (a,b) ulatuses on negatiivne, so f’(x) < 0, siis f-n kahaneb selles vahemikus. Kui funktsiooni f(x) tuletis lõigu (a,b) ulatuses on positiivne, so f’(x) > 0, siis f-n kasvab selles vahemikus. 7. Liitfunktsioon. Näited. Võime saada uusi funktsioone ka mitme funktsiooni kompositsioonina. Liitfunktsiooni saame kahe või enama funktsiooni järjest rakendamisel. Näiteks kui 𝑦 = 𝑓(𝑢) = √𝑢 𝑗𝑎 𝑢 = 𝑔(𝑥) = 𝑥 2 + 1, siis y on funktsioon x-ist, st

Matemaatiline analüüs 1
26 allalaadimist
thumbnail
11
doc

Matemaatiline analüüs - konspekt II

32. Lokaalse ekstreemumi piisavad tingimused: tingimus I. Olgu x1 funktsiooni f kriitiline punkt. Kui läbides punkti x1 vasakult paremale funktsiooni tuletise märk muutub plussist miinuseks siis on funktsioonil selles punktis lokaalne maksimum. Kui aga läbides punkti x1 vasakult paremale funktsiooni tuletise märk muutub miinusest plussiks siis on funktsioonil selles punktis lokaalne miinimum. Kui funktsioonil eksisteerib teist järku tuletis siis saab lokaalsete ekstreemumite olemasolu kontrollida ka selle abil. Nimelt maksimumpunkti läbides vasakult paremale funktsiooni graafiku puutuja tõus väheneb. See tähendab et funktsiooni tuletis kahaneb. Funktsiooni tuletis kahaneb aga juhul kui teine tuletis on negatiivne. Seevastu miinimupunkti läbides puutuja tõus suureneb, seega tuletis kasvab. Tuletis kasvab aga juhul kui teine tuletis on positiivne. Järelikult kehtib järgmine väide: Lokaalse ekstreemumi piisav tingimus II

Matemaatiline analüüs
350 allalaadimist
thumbnail
15
docx

Matemaatika analüüsi II Kontrolltöö

Matemaatilise analüüsi II Kontrolltöö 1. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. a. Teades, et ­argumendi muut kohal a -funktsiooni muut kohal a a.i. Nii me näitasime, et a.ii. Tähistades ja vahe järgmiselt a.iii. Kehtib võrratus: a.iv. Et avaldada väärtust kaudu peame kõigepealt avaldama suhte: a.v. Korrutades saadud avaldist saame:

Matemaatiline analüüs 2
100 allalaadimist
thumbnail
156
pdf

Kõrgem matemaatika

. . . . . . . . . . . . . . . . 40 4.5 Tähtsad piirväärtused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.6 Pidevad funktsioonid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.7 Funktsiooni katkevusviise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.8 Pidevate funktsioonide omadused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5 Funktsiooni tuletis ja diferentsiaal 47 5.1 Keskmine kiirus ja hetkkiirus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.2 Tuletise definitsioon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.3 Põhiliste elementaarfunktsioonide tuletised . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.4 Diferentseerimise reeglid . . . . . . . . . . . . . . .

Kõrgem matemaatika
94 allalaadimist
thumbnail
22
doc

Kõrgem matemaatika

korrutised liita. Maatriksi transponeerimine: maatriksi transponeerimiseks vahetatakse selle read ja veerud. (m × n)-maatriksi A = (aij ) transponeeritud maatriksiks nimetatakse (n × m)-maatriksit AT = (bji ), mille veergudeks on parajasti maatriksi A vastavad read 3. Determinandi mõiste, järk, tähistused. Miinor, alamdeterminant. determinant ­ ruutmaatriksile algoritmiga vastavusse seatud arv. Igale ruutmaatriksile saab vastavusse seada ühe reaalarvu, mis leitakse ühe ja sama algoritmi järgi ruutmaatriksi elementide abil. determinandi järk ­ ruutmaatriksi A järk Tähistus ­ detA või |A| determinandi elemendi miinor tekib siis, kui antud determinandist eemaldada rida ja veerg, kus antud element paikneb. n-järku determinandi mingi elemendi aij miinoriks Mij nimetatakse sellist (n-1)-järku determinanti, mis tekib, kui antud determinandist eemaldada rida ja veerg, kus paikneb vaadeldav element.

Kõrgem matemaatika
212 allalaadimist
thumbnail
16
docx

Matemaatiline analüüs 2 KT

KT 2, MAT. ANALÜÜS 18. Esitada funktsiooni muut diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu ∆x suhtes, kui ∆x läheneb nullile? Tõestada ei ole vaja.  ∆y = f’(a)∆x + β  Diferentsiaal ja jääkliige on lõpmatult kahanevad protsessis ∆x → 0. 19. Funktsiooni lokaalsete ekstreemumite definitsioonid. Sõnastada Fermat’ lemma (tõestust ei küsi). Öeldakse, et funktsioonil f on punktis x1 lokaalne maksimum, kui 1. funktsioon f on määratud punkti x1 mingis ümbruses (x1 − ɛ, x1 + ɛ); 2. iga x ∈ (x1 − ɛ, x1 + ɛ) korral kehtib võrratus f(x) ≤ f(x1).

Matemaatika
14 allalaadimist
thumbnail
20
docx

MATEMAATILINE ANALÜÜS I

iga ε>0 puhul leidub niisugune arv δ>0, et iga x≠a puhul, mis rahuldab värratus |x-a|< δ, kehtib värratus |f(x)-L|< ε Piirväärtus ei eksisteeri: 1. Parem-ja vasakpoolsed piirväärtused eksiteerivad kuid ei võrdu 2. Funktsiooni väärused kasvavad tõkestamatulet punkti a ümbruses 3. Funktsiooni väärtuste suur võnkumine punkti a ümbruses Graafiline esitus: 7. Teoreem ühepoolsete piirväärtuste võrdumise kohta. Ühepoolsete piirväärtuste tähistused lim ¿ x→ a=L lim ¿ x →a f ( x )=L on olemas ainult siis, kui lim ¿ x →a f ( x )=¿ Piirväärtus ¿ ¿ L1 nimetatakse funktsiooni f(x) parempoolseks piirväärtuseks

Matemaatiline analüüs 1
36 allalaadimist
thumbnail
5
docx

KÕIK Kollokvium II kohta. 1.10-1.16

1.10 Funktsiooni tuletis DEF 1.Funktsiooni y=f(x) tuletiseks kohal x nim. funktsiooni y=f(x) muudu y ja argumendi muudu x suhte piirväärtust, kui argumendi muut läheneb nullile. f´(x)=limy/x, piirprotsessis x->0 DEF 2. Kui funktsioonil f(x) on tuletis kohal x, siis öeldakse, et funktsioon on diferentseeruv punktis x. f´(x0) <->f(x) D(x0) DEF 3. Funktsiooni y=f(x) parempoolseks tuletiseks kohal x nim. suurust f´(x+)=limy/x, piirprotsessis x->0+ DEF 4. Funktsiooni y=f(x) vasakpoolseks tuletiseks kohal x nim. suurust f´(x-)=limy/x, piirprotsessis x->0- Funktsiooni tuletis: Lause 1. Funktsiooni f(x) diferentseeruvusest punktis x järeldub selle funktsiooni pidevus punktis x,st Tõestus

Matemaatiline analüüs
78 allalaadimist
thumbnail
51
pdf

Matemaatilise analüüsi konspekt

Teoreem 3 Olgu funktsioon y =f(x) pidev lõigul [a, b] Siis mistahes väärtuse jaoks, mis asub funktsiooni vähim ja suurima väärtuse vahel m k M leidub vähemalt üks selline punkt x3 [a, b] , et f(x3)=k Järeldus: Kui funktsioon on pidev lõigul [a, b] ja f(x1)>0 ja f(x2)<0, x1 , x 2 [a, b] . Siis leidub niisugune x3 ]x1 , x 2 [ , et f ( x 3 ) = 0 © 2001 - Ivari Horm ([email protected]), Toomas Sarv 9 Funktsiooni tuletis ja selle geomeetriline tähendus. Puutuja ja normaali võrrand. Olgu antud funktsioon y = f (x) Anname argumendile x muudu x Siis funktsioon saab vastava muudu y = f ( x + x ) - f (x) Definitsioon 1 Funktsiooni y = f ( x) tuletiseks nimetatakse piirväärtust y f ( x + x) - f ( x) y ' = lim = lim x 0 x x 0 x y

Matemaatiline analüüs
11 allalaadimist
thumbnail
51
pdf

Enno Paisu konspekt

Teoreem 3 Olgu funktsioon y =f(x) pidev lõigul [a, b] Siis mistahes väärtuse jaoks, mis asub funktsiooni vähim ja suurima väärtuse vahel m k M leidub vähemalt üks selline punkt x3 [a, b] , et f(x3)=k Järeldus: Kui funktsioon on pidev lõigul [a, b] ja f(x1)>0 ja f(x2)<0, x1 , x 2 [a, b] . Siis leidub niisugune x3 ]x1 , x 2 [ , et f ( x 3 ) = 0 © 2001 - Ivari Horm ([email protected]), Toomas Sarv 9 Funktsiooni tuletis ja selle geomeetriline tähendus. Puutuja ja normaali võrrand. Olgu antud funktsioon y = f (x) Anname argumendile x muudu x Siis funktsioon saab vastava muudu y = f ( x + x ) - f (x) Definitsioon 1 Funktsiooni y = f ( x) tuletiseks nimetatakse piirväärtust y f ( x + x) - f ( x) y ' = lim = lim x 0 x x 0 x y

Matemaatiline analüüs
179 allalaadimist
thumbnail
25
doc

Määratud integraal ja selle rakendused

avaldubki külgede korrutisega... Ametlikult öeldes: Kui f(x) 0 , siis integraalne alamsumma võrdub arvuliselt kõvera all oleva murdjoonega piiratud seesmise treppkujundi AC0N1C1N2Cn-1NnB pindalaga. MIDA TÄHELDAME, KUI VAATAME INTEGRAALSET ÜLEMSUMMAT? Kui f(x) 0, siis integraalne ÜLEMsumma võrdub arvuliselt kõvera peal oleva murdjoonega piiratud ,,välimise treppkujundi" (viirutatud kujundi) pindalaga. Nii hakkabki väljenduma vaikselt integraal kui pindala , kkdw jms arvutamise vahend b) Integraalse alam ­ja ülemsumma omadusi Olgu funktsioon f(x) pidev lõigul [a, b] ja x n vastava lõigu alamlõigu pikkust iseloomustavad argumendi muudud 1) Kuna igal alamlõigul on funktsiooni vähim väärtus alati kas väiksem funktsiooni suurimast väärtusest või sellega võrdne, siis ka integraalne alamsumma on alati kas väiksem ülemsummast või siis sellega võrdne: ehk:

Matemaatiline analüüs
221 allalaadimist
thumbnail
5
docx

Kordamisküsimused aines "Matemaatiline analüüs I"

Funktsiooni y = f(x) pöördfunktsiooniks nimetatakse funktsiooni , mis rahuldab seost ( g ( x) ) = x Pöördfunktsiooni graafik on sümmeetriline algfunktsiooni graafikuga esimese ja kolmanda veerandi nurgapoolitaja suhtes Teineteise pöördfunktsioonideks on: eksponent- ja logaritmfunktsioon tirgonomeetrilised ja arkusfunktsioonid Piirväärtus Lõpmata väike suurus, selle omadused. Muutuvat suurust, mille piirväärtus on null, nimetatakse lõpmata väikeseks lim an = 0, ehk an 0 lim f ( x) = 0, ehk f ( x) 0 n xa Lõpmata väikeste suuruste omadused: Lõpliku arvu lõpmata väikeste suuruste summa on lõpmata väike suurus. Tõkestatud muutuva suuruse ja lõpmata väikese suuruse korrutis on lõpmata väike suurus. Lõpliku arvu lõpmata väikeste suuruste korrutis on lõpmata väike suurus. Arv e. Piirväärtuse arvutamine. L'Hospitali valem, selle kasutamise eeldused. Tuletis, selle rakendused

Matemaatiline analüüs I
26 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun