Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

IAY0010 Diskreetne matemaatika kodutöö (0)

3 KEHV
Punktid
Vasakule Paremale
IAY0010 Diskreetne matemaatika kodutöö #1 IAY0010 Diskreetne matemaatika kodutöö #2 IAY0010 Diskreetne matemaatika kodutöö #3 IAY0010 Diskreetne matemaatika kodutöö #4 IAY0010 Diskreetne matemaatika kodutöö #5 IAY0010 Diskreetne matemaatika kodutöö #6 IAY0010 Diskreetne matemaatika kodutöö #7 IAY0010 Diskreetne matemaatika kodutöö #8 IAY0010 Diskreetne matemaatika kodutöö #9
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 9 lehte Lehekülgede arv dokumendis
Aeg2017-12-07 Kuupäev, millal dokument üles laeti
Allalaadimisi 162 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor MonsieurDerriere Õppematerjali autor
Kodune kontrolltöö õppeaines IAY0010 Diskreetne matemaatika.

Sarnased õppematerjalid

thumbnail
19
docx

Diskreetne matemaatika

Tallinna Tehnikaülikool Diskreetne matemaatika KODUTÖÖ Mina Ise 132456 IADB?? Tallinn 2019 ÜLESANNE 1 LOOGIKAFUNKTSIOON Leian oma matriklinumbrile vastav 4-muutuja loogikafunktsioon Matriklinumbri 5 viimast numbrit: 93656 Matriklinumber kuueteistkümnendsüsteemis: 2F478 Seitsmekohaline arv: 3F58CC8 Üheksakohaline arv: 54DFF9FF8 Ühtede piirkond: 3, 5, 8, 12 ( C16 ), 15 ( F16 )/ 0011, 0101, 1000, 1100, 1111 Määramatuspiirkond : 4, 9, 13 ( D16 ) / 0100, 1001, 1101 0-de piirkond : 0, 1, 2, 6, 7, 10 ( A16 ), 11 ( B16 ), 14 ( E16 ) / 0000, 0001, 0010, 0110, 0111, 1010, 1011, 1110 𝒇(x(x1,x2,x3,x4) = ∑ ( 3, 5, 8, 12, 15 )1 ( 4, 9, 13 )_ 𝒇(x(x1,x2,x3,x4) = ∏ ( 0, 1, 2, 6, 7, 10, 11, 14 )0 2 ÜLESANNE 2 TÕEVÄÄRTUSTABEL Esitada oma loogikafunktsiooni tõeväärtustabel. x1 x2

Diskreetne matemaatika
thumbnail
11
docx

Diskreetse matemaatika kodutöö (2011)

Tallinna Tehnikaülikool Diskreetne Matemaatika KODUTÖÖ 1. Leida oma matriklinumbrile vastav 4- muutuja loogikafunktsioon. Loogikafunktsioon: f (x1, x2, x3, x4) = 1 (8, 9, 10)_ 2. Leida MDNK ja MKNK, mis sobiksid matriklinumbrist leitud osaliselt määratud 4- muutuja funktsiooni esitamiseks. MDNK ­ Karnaugh' kaardiga f (x1, x2, x3, x4) = 1 (8, 9, 10)_ x3x4 00 01 11 10 x1x2 00 1 0 0 1 01 0 1 1 0 11 1 0 1 0 10 - - 0 - f (x1, x2, x3, x4) = MKNK ­ McCluskey meetodiga Lihtimplikantide hulga leidmine Ind- Ind- Nr Märge Nr Vahe Märge Indeks Nr Vahe Märge eks eks

Diskreetne matemaatika
thumbnail
6
doc

Diskreetse matemaatika kodutöö

Tallinna Tehnikaülikool Diskreetse Matemaatika KODUTÖ Ö Kristjan Lank 082784 MAHB-11 Tallinn 2009 1. Leida oma matriklinumbrile vastav 4-muutuja loogikafunktsioon. Matrikli number on 082784 Ühtede piirkonna määramiseks saadud 16-nd arv on 205FBF60 Ühtede piirkond on seega f(x1,x2,x3,x4) = (0,2,5,6,11,15) 1 Määramatuspiirkonna määramiseks saadud 16-nd arv on 1E783BA Määramatuspiirkond on seega f(x1,x2,x3,x4) =(1,3,7,8,10,14) ­ 2. Leida selle funktsiooni MKNK Karnaugh' kaardiga ja MDNK McCluskey' meetodiga. MKNK: x3x4 x1x2 00 01 11 10 00 1 - - 1 01 0 1 - 1 11 0 0

Diskreetne matemaatika
thumbnail
5
docx

Diskreetse matemaatika kodutöö

Tallinna Tehnikaülikool Diskreetne Matemaatika KODUTÖÖ Olga Dalton 104493 IAPB11 Tallinn 2010 1. Leida oma matriklinumbrile vastav 4-muutuja loogikafunktsioon. Matrikli number on 104493

Diskreetne matemaatika
thumbnail
8
docx

Diskreetse Matemaatika kodune (2012)

Tallinna Tehnikaülikool Diskreetne Matemaatika Kodutöö Jago Niin 123835 IASB12 1. Leida oma matriklinumbrile vastav 4-muutuja loogikafunktsioon. Matrikli number on 123835. Saadud 8-kohaline 16-süsteemi arv on 10247E89. Määramispiirkonna leidmisel tuleb arv F31680. f(, , , ) = 2. Leida MDNK ja MKNK, mis sobiksid matriklinumbrist leitud osaliselt määratud 4-muutuja funktsiooni esitamiseks. Leian MDNK Karnaugh' kaardiga. f(, , , ) = x3x4 00 01 11 10 x1x2 00 1 1 - 1 01 1 0 1 - 11 0 0 - 1 10 1 1 0 0 MDNK: f(, , , ) = v v v MKNK ­ McCluskey meetodiga f(, , , ) = Indek Nr Indeks Intervall Märge Intervall Märge s 3 *0011 x

Diskreetne matemaatika
thumbnail
7
doc

Diskreetse matemaatika kodutöö 2009

Tallinna Tehnikaülikool Diskreetne matemaatika KODUTÖÖ Kristjan Keskküla 093540 IASB Tallinn 2009 ÜLESANNE 1 Leida oma martiklinumbrile vastav 4-muutuja loogikafunktsioon f(x1, x2, x3, x4) = (2,4,8,9,14,15) (6,11,13) _ (järgnevalt kui funktsioon) 1 ÜLESANNE 2 Leida MDNK ja MKNK, mis sobiksid martiklinumbrist leitud osaliselt määratud 4-muutuja funktsiooni esitamiseks Kuna minu martiklinumber on paarisarvuline leian: MKNK Karnaugh' kaardiga ja MDNK McCluskey' meetodiga. 1) Leian MKNK Karnaugh' kaardiga MKNK leidmiseks joonestan Karnaugh' kaardi, kuhu kannan peale funktsiooni 1d, 0d ja määramatused. x3x400 01 11 10 x1x2 00 0 0 0 1 01 1 0 0 - 11 0 - 1 1 10 1 1 - 0 Tegu on osaliselt määratud funktsiooniga.

Diskreetne matemaatika
thumbnail
16
pdf

Diskreetne matemaatika (IAX0010) Kirjalik kodutöö

Tallinna Tehnikaülikool Diskreetne Matemaatika KODUTÖÖ Karina Reisel Matrikli number: 223109 Rühm: IACB13 Karina Reisel – IACB13 (223109) 14.12.2022 1. Leida matriklinumbrile vastav 4-muutuja loogikafunktsioon Matrikli number 223109. Esimene 7-kohaline 16ndarv 34EA125 on 1-de piirkond. 9-kohalise tekkinud 16ndarvu 46E 59E 893 järguväärtused 0...15, mis ei kuulu 1-de piirkonda, moodustavad funktsiooni määramatuspiirkonna. Ülejäänud järguväärtused, mis ei esine 1-de ega määramatuspiirkonnas on 0-de piirkonda kuuluvad arvud. Seega matriklinumbrile 223109 vastav 4-muutuja loogikafunktsioon 10ndesituses: 2 Karina Rei

Diskreetne matemaatika
thumbnail
6
doc

Kodutöö 2008

Tallinna Tehnikaülikool Diskreetse Matemaatika KODUTÖÖ 082800 MAHB11 Tallinn 2008 Ülesanne 1. Leida oma matriklinumbrile vastav 4-muutuja loogikafunktsioon. f( x1, x2, x3, x4 ) = (0,1,2,5,6,7,9)1 (11,13,14)- 1 1 0 1 0 1 1 1 0 - 0 - 0 1 - 0 Ülesanne 2. MKNK leidmine Karnaugh' kaardiga. MKNK: f(x1,x2, x3, x4)= (x 1 )( )( )( x3 x1 x 2 x2 x3 x 4 x2 x3 x 4 ) MDNK leidmine McCluskey meetodiga Ind Märge Ind. Nr.-d Vahe Märge Ind. Nr.-d Vahe Märge Nr. . 0 0 x 0-1 0-1 1

Diskreetne matemaatika




Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun