Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge
Add link

Kategooria diskreetne matemaatika - 117 õppematerjali

Matemaatika >> Diskreetne matemaatika
8
docx

Diskreetne matemaatika kodutöö

Tallinna Tehnikaülikool Infotehnoloogia teaduskond Diskreetne Matemaatika KODUTÖÖ Üliõpilane: Andri Kaaremäe Õpperühm: IABB13 Matrikli nr: 154819 Tallinn 1) Matriklinumbrile vastav 4-muutuja loogikafunktsioon f(x1 ... x4) = (2, 3, 4, 5, 9, 10)1 (7, 8, 11, 13)_ (0, 1, 6, 12, 14, 15)0 2) Tõeväärtustabel X1 X2 X3 X4 f 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 0 1 1 0 1 1 0 0 0 1 1 1 - 1 0 0 0 - 1 0 0 1 1 1 0 1 0 1 1 0...

Diskreetne matemaatika - Tallinna Tehnikaülikool
298 allalaadimist
10
pdf

Diskreetne matemaatika Kodutöö

Tallinna Tehnikaülikool Diskreetne Matemaatika Kodutöö Ilya Zaitsev 179712IACB IACB12 1.Matriklinumbrile vastav 4-muutuja loogikafunktsioon Matriklinumber: 179712 7-kohaline 16-nd süsteemi arv: 3AC9200 Seega ühtede piirkond on f(x1...x4) = (0, 2, 3, 9, 10, 12)1 9-kohaline 16-nd süsteemi arv: 4EC3 79E00 Seega määramatuspiirkond on f(x1...x4) = (4, 7, 14) _ Nullide piirkond: 1, 5, 6, 8, 11, 13, 15 Minu funktsioon: f(x1... x4) = (0, 2, 3, 9, 10, 12)1 (4, 7, 14)_ 2. Loogikafunktsiooni tõeväärtustabel X1 X2 X3 X4 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 0 1 0 0 - 0 1 0 1 0 0 1 1 0 0 0 1 1 1 - 1 0 0 0 0 1 0 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 1 0...

Diskreetne matemaatika - Tallinna Tehnikaülikool
324 allalaadimist
3
pdf

Diskreetne matemaatika II - esimene kodutöö

Diskreetne matemaatika II Kodused ülesanded 1 Olga Dalton 104493 IAPB21 1. (a) Kuna A on positiivsete täisarvude hulk, mille viimane number on 3, siis sisaldab hulk A arve 1,2,3, nendest paarisarv on 2. Seega on hulkade A ja B ühisosa {2} VV { { (b) 5-ga jagub iga arv, mis lõpeb kas 5 või 0-ga. Nendest arvudest on 5-ga lõppevad paaritud ja 0-ga lõppevad paarisarvud. Seega kuuluvad hulkade A ja B ühisosasse 0-ga lõppevad ja 5-ga jaguvad täisarvud, st 10-ga jaguvad täisarvud(arvud, mis annavad 10-ga jagamisel jäägi 0): VV {YÉY X { 2. Kujutan Venni diagrammil C = A B Et A C = (AC) (CA), siis · (AC) kujutub järgmiselt: · (CA) j...

Diskreetne matemaatika - Tallinna Tehnikaülikool
231 allalaadimist
18
docx

IAY0010 Diskreetne matemaatika kodutöö

1 ÜLESANNE 1 LOOGIKAFUNKTSIOON......................................................3 ÜLESANNE 2 TÕEVÄÄRTUSTABEL..........................................................3 ÜLESANNE 3 MINIMAALSED NORMAALKUJUD........................................3 3.1 MDNK KARNAUGH’ KAARDIGA.......................................................................3 3.2 MKNK MCCLUSKEY MEETODIGA.....................................................................4 3.3 VÕRDLUS....................................................................................................... 5 ÜLESANNE 4 MKNK TEISENDAMINE DNK-KUJULE....................................5 ÜLESANNE 5 DISJUNKTIIVSED NORMAALKUJUD.....................................5 5.1 TAANDATUD DNK...

Diskreetne matemaatika - Tallinna Tehnikaülikool
145 allalaadimist
7
docx

Diskreetne Matemaatika

11 10 x3x4 x1x2 00 01 11 10 00 0 1 - 1 01 1 0 0 - 11 1 0 0 0 10 1 1 - 0   f  x1 , x2 , x3 , x4    x1  x2  x3  x4  x2  x4 x1  x3  MKNK: 2. Ind. Nr. Märge Ind. Nr.-d Vahe Märge Ind. Nr.-d Vahe Märge 1 1 x 1-2 1-3 2 x 1-2-2- 1-3-9- 2,8 A7 3...

Diskreetne matemaatika - Tallinna Tehnikaülikool
83 allalaadimist
20
pdf

Diskreetne matemaatika I IAY0010 eksami konspekt

Verbaalne esitus on mistahes info esitamine lingvistilise keele abil. Formaalne esitus on mistahes info esitamine ilma lingvistilise keele abita ehk esitus kokkulepitud sümbolite abil. Formaalne esitus peab olema üheselt tõlgendatav. Lausearvutus on loogilise mõtlemise matemaatiline mudel. Lausearvutuse lause võib olla iga verbaalne väide, millele saame omistada tõeväärtuse – tõene või vale. Lihtlause on lihtsaim võimalik lausearvutuslause. Lausearvutuslauseid tähistatakse formaalselt suurtähtedega: A, B, P, Q … Lihtlausetest koostatakse kindlate sidesõnade ja loog konstruktsioonide abil liitlauseid. Lausearvutuse lihtlauseid seotakse liitlauseteks 5 loogilise konstruktsiooni ehk loogikatehte abil. Binaarsed loogikatehted seovad kahte lauset (4 tk), unaarne loogikatehe on rakendatav üksikule lausele (1 tk – eitus). Loogiline korrutamine ehk konj...

Diskreetne matemaatika - Tallinna Tehnikaülikool
520 allalaadimist
14
docx

Diskreetne matemaatika I IAY0010 kodutöö

1) Matriklinumber: 134303 7-kohaline 16-nd süsteemi arv: 2BEE909 1-de piirkond: 0, 2, 9, 11, 14 9-kohaline 16-nd süsteemi arv: 3ADCA3B0F Määramatuspiirkond: 3, 10, 12, 13, 15 Nullide piirkond: 1, 4, 5, 6, 7, 8 1, 4,5, 6, 7,8 ¿ 0 (3,10, 12,13, 15)¿ 0, 2,9, 11, 14 ¿1 ∏ ¿ f =( x 1 … x 4 ) =∑ ¿ 2) Tõeväärtustabel: x1 x2 x3 x4 f 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 1 - 0 1 0 0 0 0 1 0 1 0 0 1 1 0 0 0 1 1 1 0 1 0 0 0 0 1 0 0 1 1 1 0 1 0 - 1 0 1 1 1 1 1 0 0 - 1 1 0 1 - 1 1 1 0 1 1 1 1 1 - 3) MDNK Karnaugh’ kaardi abil: x3 x1 x4 00 01...

Diskreetne matemaatika - Tallinna Tehnikaülikool
383 allalaadimist
0
png

Diskreetne matemaatika 1 moodle testide vastused

Tallinna Tehnikaülikool, aine diskreetne matemaatika 1 moodle testide vastused...

Diskreetne matemaatika - Tallinna Tehnikaülikool
43 allalaadimist
5
doc

Diskreetne matemaatika kodutöö (vene keeles)

IAY0010 DISKREETNE MATEMAATIKA ( 17-1) : (083905 IAPB-18) : , 2008 : x2 x4 x1 x3 00 01 11 10 00 - 0 1 1 10 - 0 0 0 11 - 1 1 0 x1 01 0 1 - 1 x3 x4 x2 1. . 1.1. . - 0 1...

Diskreetne matemaatika - Tallinna Tehnikaülikool
62 allalaadimist
2
pdf

Mis on DISKREETNE MATEMAATIKA ?

Mis on DISKREETNE MATEMAATIKA ? Millega Diskreetne Matemaatika tegeleb ? T Ü Mõiste "diskreetne" on teisiti väljendatav sõnadega"mitte pidev" ehk Diskreetse matemaatika alla kuuluvad: T "astmeline". Järgnev joonis illustreerib mõisteid pidev ja diskreetne: — Loogika Lausearvutus. Loogikatehted. Loogikaseadused. Predikaadid. Tõestusmeetodid k a — Hulgad i Hulgaalgebra (Cantori algebra). Hulgaaritmeetika n...

Diskreetne matemaatika -
33 allalaadimist
7
doc

Diskreetne matemaatika kodutöö

Teisendatud kuju ühtede piirkond: 24AB1665>2,4,10,11,1,6,5 Teisendatud kuju määramatuse piirkond: 2282E7E> 8, 14, 7 f(X1X2X3X4)=(1,2,4,5,6,10.11)1(7,8,14)_ 2. MDNK Karnaugh' kaardiga! x3x4 x1x2 00 01 11 10 00 1 1 _ 01 1 1 1 _ 11 _ 10 1 1 MDNK f ( x1 x2 x3 x4 ) = x1 x2 x1 x3 x4 x1 x2 x3 x3 x4 McCluskey f(x1 ,x2 ,x3, x4 ) = (0,3,9,12,13,15)0(7,8,14)- In 0-de pk. M Ind 2-sed intervallid M Ind 4-sed d intervallid 0 0000 X 0-1 -000 A1 0-1-1-2 1 1 0 0 0*...

Diskreetne matemaatika - Tallinna Tehnikaülikool
551 allalaadimist
4
pdf

Diskreetne matemaatika II - teine kodutöö

Diskreetne matemaatika II Kodused ülesanded 2 Olga Dalton 104493 IAPB21 ÜLESANNE 1 1. Katsetan väiksemate n-i väärtustega. Tähistan summa -ga. J 2, JJ J = 1 JJJI I JI IIJ. 1 1 J = 2 => $ = = 12 2 1 1 1 1 2 J = 3 => % = + = + = 12 23 2 6 3 1 1 1 1 1 1 3 J = 4 => & = + + = + + = 12 23 34 2 6 12 4 ................. 1 1 1 1 1 1 1 1 1 9 J = 10 => #" = + + + + + + + + = 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10...

Diskreetne matemaatika - Tallinna Tehnikaülikool
171 allalaadimist
4
pdf

Diskreetne matemaatika II - kolmas kodutöö

Diskreetne matemaatika II Kodused ülesanded 3 Olga Dalton 104493 IAPB21 ÜLESANNE 1 = 2 # + 8 $ , # = 1, $ = 1 Kirjutan välja karakteristliku võrrandi: $ - 2 - 8 = 0 Leian karakteristliku võrrandi lahendid. = 1 ± 1 + 8 = 1 ± 3 # = 4 I $ = -2 Seega on rekurrentse võrrandi lahend: = I# 4 + I$ (-2) Leian I# ja c$ . I# 4# + I$ (-2)# = 1 4I# - 2I$ = 1 4I# = 1 + 2I$ I# = 0,25 + 0,5I$ I# 4 + I$ (-2) = 1 $ $ 16I# + 4I$ = 1 16(0,25 + 0,5I$ ) + 4I$ = 1 4 + 8I$ + 4I$ = 1 12I$ = -3 I$ = -0,25 I I# = 0,125 Vastus: = 0,125 4 - 0,25 (-2) ÜLESANNE 2 Koostan rekurrentse seose. Olgu An eri viisid...

Diskreetne matemaatika - Tallinna Tehnikaülikool
184 allalaadimist
5
pdf

Diskreetne matemaatika II - neljas kodutöö

Diskreetne matemaatika II Kodused ülesanded 4 Olga Dalton 104493 IAPB21 ÜLESANNE 1. $ - 2 0 (J 11) Toon x-i sulgude ette. ( - 2) 0 (J 11) Siit järeldub, et kas 11É või 11É( - 2), sest vastasel juhul ei saaks jäägiks 0-i. Seega on võrrandil kaks lahendit: # 0 (J 11) ja $ 2 (J 11), sest jäägi null annab - 2, seega peab $ ise andma jäägiks 2-e. Vastus: # 0 (J 11); $ 2 (J 11) ÜLESANNE 2. 25 + 41 = 1 Täisarvuliste kordajatega võrrandil I + I = I leiduvad täisarvulised lahendid parajasti siis, kui gcd(I, I)ÉI. Seega leian alguses kordajad u ja v nii, et 25 + 41 = gcd(25,41) Kasutan selleks Eukleidese algoritmi. gcd(25,41) = gcd(16,25) = gcd(9,16) = gcd(7,9) = gcd(2,7) = gcd(1,2) = 1 Kirjutan välja, kuidas jäägiga j...

Diskreetne matemaatika - Tallinna Tehnikaülikool
144 allalaadimist
4
pdf

Diskreetne matemaatika II - viies kodutöö

Diskreetne matemaatika II Kodused ülesanded 5 Olga Dalton 104493 IAPB21 ÜLESANNE 1. Leian etteantud puu Prüferi koodi. 1) Kõige väiksema märgendiga leht on 1 ja selle naabertipp 2. Panen 2 Prüferi koodi kirja ja eemaldan lehe 1 ja temaga seotud serva. 2) Nüüd on kõige väiksema märgendiga leht 2 ja selle naabertipp 0. 3) Kõige väiksema märgendiga leht 4 ja selle naabertipp 0. 4) Kõige väiksema märgendiga leht 5 ja selle naabertipp 3. 5) Kõige väiksema märgendiga leht 3 ja selle naabertipp 0. 6) Järele jäid ainult tipud 0 ja 6, mis on omavahel ühendatud ja see on märk, et puu Prüferi kood on leitud ning tippude eemaldamist võib lõpetada. Seega on etteantud puu Prüferi kood: 20030 Vastus: 20030 Diskreetne matemaatika...

Diskreetne matemaatika - Tallinna Tehnikaülikool
107 allalaadimist
1
docx

Diskreetne Matemaatika Eksam 2011

2011 Diskreetne Matemaatika Eksam 1. Mis on graafi värvimise ülesanne? Mis on kromaatiline arv? Joonistada mõni näide. Mis on kromaatiline arv 2 aluselisel graafil? Mis on täieliku graafi kromaatiline arv? 2. Hulgateooria mõiste sümmeetrilise vahe kohta. Taandada sümeetriline vahe cantori normaalkujuks. Kas see täielik normaalkuju on minimaalne? Taandatud? Täielik? Mis on sümmeetrilise vahe matemaatilises loogikas? 3. Avaldis (x1x2x3x4) = Mingi konjuktiivne funktsioon (ei mäleta) 1. Leida minimaalne DNK 2. Leida taandatud KNK 4. Funktsioon (x1x2x3) = E(0,2,5,6,7)1 1. Leida täielik KNK 2. Leida shannoni arendus DNK x2 järgi. 3. Leida tuletis x3 järgi. Jääk ära näidata minimaalsel kujul. ...

Diskreetne matemaatika - Tallinna Tehnikaülikool
477 allalaadimist
5
pdf

4.arvestustöö, diskreetne matemaatika

arvestustöö Tallinna Tehnikaülikool Lk 331-332 ülesanded 1. f = x1 x 2 x3 x 4 x 2 x3 x 4 x1 x 2 = x1 x 2 x3 x 4 x 2 x3 x 4 x1 x 2 = ( x1 x 2 x3 x 4 ) (x 2 x3 x 4 ) ( x1 x 2 ) · Ei ole minimaalne · (0,1,2,3,8)0 (4,5,6,7,9,10,11,12,13,14,15)1 · MDNK= x2 x1 x3 x1 x 4 · Skeem JA-EI elementidel: x2 x1 x3 x1 x4 = x2 x1 x3 x1 x4 = x2 x1 x3 x1 x 4 · x 2 x1 x3 x1 x 4 = x 2 x1 x3 x1 x 4 = x 2 x1 x3 x1 x 4 x 2 x1 x3 x1 x 4 = x 2 ( x1 x3 x 4 x1 x3 x1 x 4 ) = · x 2 ( x1 x3 x 4 x1 x3 x1 x 4 ) ( x1 x3 x 4 x1 x3 x1 x 4 ) x 2 = x1 x 2 x3 x 4 x1 x 2 x3 x1 x 2 x 4 x1 x3 x 4 x1 x3 x1 x 4 x 2 · Funktsioon ei ole pööratav....

Diskreetne matemaatika - Tallinna Tehnikaülikool
71 allalaadimist
4
pdf

Diskreetne Matemaatika KAUGÕPE

arvestustöö Tallinna Tehnikaülikool Lk.53 ülesanded · A B = {a; b; c; d; e; f; g; h} A B = {a; b; c; d; e} AB=Ø B A = {f; g; h} B A = {f; g; h} · Hulk A {1;3;5;6;7;8;9} Hulk B {2;3;6;9;10} · A B = A Juhul kui A on B sees A B = A Juhul kui B on A sees A B = A Erijuhul kui B on tühihulk A B = B A Kirjeldab kommutatiivsus teooriat A B = B A Kirjeldab mitte lõikuvaid hulki, ehk puudub ühisosa · (A B) C ABC C(AB) Tallinna Tehnikaülikool · A(BC)=(AB)(AC) A(BC)=(AB)(AC) · AB=A AB=A · [ (A B) (A B) (A C) ] = = (A B) (A B) (A C) = = Ø (A B) Ø = (A B) = = ( A) ( B) = Ø ( B) = B · (A C) (B C) (A C ) ( B C...

Diskreetne matemaatika - Tallinna Tehnikaülikool
67 allalaadimist
0
zip

Diskreetne matemaatika I Moodle testid TTÜ

Kõik 100% lahendatud diskreetse matemaatika I moodle testid aastast 2013.Testid on .png formaadis .zip arhiivis.KONTROLLKÜSIMUSTEGA TEST - lausearvutusKONTROLLKÜSIMUSTEGA TEST — hulgad IKONTROLLKÜSIMUSTEGA TEST — hulgad IIKONTROLLKÜSIMUSTEGA TEST - arvusüsteemidKONTROLLKÜSIMUSTEGA TEST - vastavused ja relatsioonidKONTROLLKÜSIMUSTEGA TEST - loogikaalgebraKONTROLLKÜSIMUSTEGA TEST - loogikafunktsioonidKONTROLLKÜSIMUSTEGA TEST - funktsioonide normaalkujude minimeerimineKONTROLLKÜSIMUSTEGA TEST - loogikaavaldiste erikujudKONTROLLKÜSIMUSTEGA TEST - loogikaelemendid digitaalskeemidesKONTROLLKÜSIMUSTEGA TEST - loogikafunktsioonide klassidKONTROLLKÜSIMUSTEGA TEST - funktsioonide täielikud süsteemid ja baasid...

Diskreetne matemaatika - Tallinna Tehnikaülikool
151 allalaadimist
0
png

Diskreetne Matemaatika I – Moodle kontrolltöö – Arvusüsteemid

Diskreetse matemaatika I õigete vastustega lahendatud 2. kontrollküsimustega test Moodles. NB! Tegu on ühe suure pildiga vastuste lehest!...

Diskreetne matemaatika - Tallinna Tehnikaülikool
37 allalaadimist


Registreeri ja saadame uutele kasutajatele
faili e-mailile TASUTA

Konto olemas? Logi sisse

Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun