Tallinna Tehnikaülikool DISKREETNE MATEMAATIKA KODUTÖÖ Elena Borissov 155175IAPB IAPB11 1. Leida oma matriklinumbrile vastav 4-muuutuja loogikafunktsioon Esimene seitsmekohaline arv kalkulaatoris 32C2641 . Kümnendarvudena 3, 2, 12, 6, 4, 1 Järjekorras 1, 2, 3, 4, 6, 12 1de piirkond Esimene üheksakohaline arv kalkulaatoris 440274117 Järjekorras 0, 7 määramatus piirkond 5, 8, 9, 10, 11, 13, 14, 15 0de piirkond f(x1, x2, x3, x4)=∑(1, 2, 3, 4, 6, 12)1 (0, 7)_ 2. Tõeväärtustabel x1, x2, x3, x4 f 0000 - 0001 1 0010 1 0011 1
Tallinna Tehnikaülikool Diskreetne Matemaatika KODUTÖÖ Olga Dalton 104493 IAPB11 Tallinn 2010 1. Leida oma matriklinumbrile vastav 4-muutuja loogikafunktsioon. Matrikli number on 104493 Ühtede piirkonna määramiseks saadud 16-nd arv on 28DD194D Seega on ühtede piirkond f(x1,x2,x3,x4) = (1,2,4,8,9,13)1 Määramatuspiirkonna määramiseks saadud 16-nd arv on 2675BD7 Määramatuspiirkond on seega f(x1,x2,x3,x4) = (5,6,7,11) Seega on matriklinumbrile 104493 vastav 4-muutuja loogikafunktsioon oma numbrilises 10ndesituses: f(x1.
1. Martiklinumbrile vastav 4-muutuja loogikafunktsioon? Minu martiklinumber: 155042 -> 25DA2 7-kohaline: 3 2 B 7 4 O E ----> 0 2 3 4 7 11 14 9-kohaline: 4 3 F 3 8 7 E C 2 ----> 2 3 4 7 8 12 14 15 Määramatus: 8, 12, 15 0-de piirkond: 1, 5, 6, 9, A, D f(x1, x2, x3, x4) = (0,2,3,4,7,11,14)1(8,12,15)_ 2. Loogikafunktsiooni tõeväärtustabel x1 x2 x3 x4 f 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0 - 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 1 1 0 0 - 1 1 0 1 0 1 1 1 0 1
Tallinna Tehnikaülikool Diskreetse Matemaatika KODUTÖ Ö Kristjan Lank 082784 MAHB-11 Tallinn 2009 1. Leida oma matriklinumbrile vastav 4-muutuja loogikafunktsioon. Matrikli number on 082784 Ühtede piirkonna määramiseks saadud 16-nd arv on 205FBF60 Ühtede piirkond on seega f(x1,x2,x3,x4) = (0,2,5,6,11,15) 1 Määramatuspiirkonna määramiseks saadud 16-nd arv on 1E783BA Määramatuspiirkond on seega f(x1,x2,x3,x4) =(1,3,7,8,10,14) 2. Leida selle funktsiooni MKNK Karnaugh' kaardiga ja MDNK McCluskey' meetodiga. MKNK: x3x4 x1x2 00 01 11 10 00 1 - - 1 01 0 1 - 1
Tallinna Tehnikaülikool Diskreetne matemaatika KODUTÖÖ Kristjan Keskküla 093540 IASB Tallinn 2009 ÜLESANNE 1 Leida oma martiklinumbrile vastav 4-muutuja loogikafunktsioon f(x1, x2, x3, x4) = (2,4,8,9,14,15) (6,11,13) _ (järgnevalt kui funktsioon) 1 ÜLESANNE 2 Leida MDNK ja MKNK, mis sobiksid martiklinumbrist leitud osaliselt määratud 4-muutuja funktsiooni esitamiseks Kuna minu martiklinumber on paarisarvuline leian: MKNK Karnaugh' kaardiga ja MDNK McCluskey' meetodiga. 1) Leian MKNK Karnaugh' kaardiga MKNK leidmiseks joonestan Karnaugh' kaardi, kuhu kannan peale funktsiooni 1d, 0d ja määramatused. x3x400 01 11 10 x1x2 00 0 0 0 1 01 1 0 0 - 11 0 - 1 1
Tallinna Tehnikaülikool Diskreetne Matemaatika Kodutöö Jago Niin 123835 IASB12 1. Leida oma matriklinumbrile vastav 4-muutuja loogikafunktsioon. Matrikli number on 123835. Saadud 8-kohaline 16-süsteemi arv on 10247E89. Määramispiirkonna leidmisel tuleb arv F31680. f(, , , ) = 2. Leida MDNK ja MKNK, mis sobiksid matriklinumbrist leitud osaliselt määratud 4-muutuja funktsiooni esitamiseks. Leian MDNK Karnaugh' kaardiga. f(, , , ) = x3x4 00 01 11 10 x1x2 00 1 1 - 1 01 1 0 1 - 11 0 0 - 1 10 1 1 0 0 MDNK: f(, , , ) = v v v MKNK McCluskey meetodiga f(, , , ) =
1. Teisendatud kuju ühtede piirkond: 24AB1665>2,4,10,11,1,6,5 Teisendatud kuju määramatuse piirkond: 2282E7E> 8, 14, 7 f(X1X2X3X4)=(1,2,4,5,6,10.11)1(7,8,14)_ 2. MDNK Karnaugh' kaardiga! x3x4 x1x2 00 01 11 10 00 1 1 _ 01 1 1 1 _ 11 _ 10 1 1 MDNK f ( x1 x2 x3 x4 ) = x1 x2 x1 x3 x4 x1 x2 x3 x3 x4 McCluskey f(x1 ,x2 ,x3, x4 ) = (0,3,9,12,13,15)0(7,8,14)- In 0-de pk. M Ind 2-sed intervallid M Ind 4-sed d intervallid 0 0000 X 0-1 -000 A1 0-1-1-2
Tallinna Tehnikaülikool Diskreetne Matemaatika KODUTÖÖ Mark-Felix Mumma 154844 IABB13 x1 x2 x3 x4 f 1. Martiklinumber: 154844 Vahearv 1: 32A6AC4 0 0 0 0 -- Vahearv 2: 43DD50C9C 0 0 0 1 0 ( 2,3,4,6,10,12 )1 ( 0,5,9,13 )-¿ 0 0 1 0 1 2. f ( x1 , x2 , x3 , x 4 ) = ¿ 0 0 1 1 1 0 1 0 0 1 0 1 0 1 -- 0 1 1 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 -- 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 1 -- 1 1 1 0 0 1 1 1 1 0 3. MDNK : ´x 3 x 2 x´ 1 ´x2 x 3 ´x 2 x 3 x´ 4 ´x 1 x´ 4 Karnaugh-iga MDNK McCluskey' meetodiga:
Kõik kommentaarid