15 12 33 95 10 87 25 1 62 52 98 94 62 46 11 71 79 75 24 91 40 71 96 12 82 4 6 96 38 27 7 74 20 96 69 86 10 80 25 91 74 85 22 5 39 0 38 75 95 79 xi ni xi*ni ni*xi2 ni*(xi-xk)2 0 0 1 0 0 2132,59 1 1 1 1 1 2041,23 3 3 1 3 9 1864,51 4 4 1 4 16 1779,15 7 7 1 7 49 1535,07 8 8 1 8 64 1457,71 10 10 2 20 200 2617,98 10 13 3 39 507 3302,74 13 15 1 15 225 972,19 13 20 2 40 800 1370,78 13 22 2 44 ...
Kursus A Õpilase nr 1 2 3 4 5 6 7 8 9 Testi tulemus 13 16 20 18 11 0 16 14 16 Kursus B Õpilase nr 1 2 3 4 5 6 7 8 9 Testi tulemus 19 17 9 15 17 20 18 6 18 Piirid Sagedus Piirid 4 2 4 8 2 8 12 6 12 16 10 16 20 11 20 Jääk 0 Jääk 10 11 12 13 14 15 16 17 18 19 20 21 22 23...
Rakendusstatistika arvutusgraafilise töö andmed ja lahenduse kontrollelemendid MHT/2010 Üliõpilane: Üliõpilaskood: Lahenduse esitamiskuupäev: Andmete kood: Andmed Andmed-A: valim A mahuga N=25 (arvkarakteristikud, jaotuse analüüs, dispersioonanalüüs) 16 35 38 49 51 69 1 69 19 87 3 44 24 84 7 41 41 10 79 15 87 82 5 76 1 8 8 Andmed-B: valimid B1 ja B2 (regressioonimudeli leidmine ja analüüs) xi 4,0 1,0 5,0 3,0 2,0 yi 0,1 5,5 0,2 1,2 3,5 Valim B1: Paarisvalim (xi, yi) regressioonimudeli leidmiseks (mahuga N=5) Valim B2: Korduskatsete sari väljundi dispersiooni leidmiseks (mahuga w=7) 3,3 2,0 4,6 3,9 3,0 2,7 6,3 Lahenduse kontrollelemendid Ülesanne/alamülesanne 1 Keskväärtus: Dispersioon:814,0567 Standardhälve:28,53 Mediaan: ...
Rakendusstatistika arvestusharjutus. Osa A. N=25 1. Leida keskväärtuse, dispersiooni, standardhälbe, mediaani ja haarde hinnangud. Keskväärtus Dispersioon Standardhälve Mediaan Me=49 Haare 2. Leida keskväärtuse ja dispersiooni usaldusvahemikud (eeldades üldkogumi normaaljaotust ning võttes olulisuse nivooks = 0.10). Keskväärtuse usaldusvahemik: = 0,10 t0,1; 24= 1,71 Dispersiooni usaldusvahemik: = 0,10 ja 3. Kontrollida järgmisi hüpoteese (eeldades üldkogumi normaaljaotust ning võttes olulisuse nivooks = 0.10) 3.1 H0: = 50 alternatiiviga H1: 50 Et Hüpotees vastu võetaks, peab tkr > t; 1,71 > 0,6. Hüpotees võetakse vastu. H0: 2 = 800 alternatiiviga H2: 2 800 Et hüpotees vastu võetaks peab jääme kahe kriitilise väärtuse vahele: 13,84 < 21,2< 36,42. Hüpotees võetakse vastu. 4. Leida valimile vastav empiiriline histogramm võrdlaiade vahemikega 0-20, 20-40, 40- 60, 60-80 ja 80-100 ning kontrollida 2 -testi järgi ...
Variant 23 0, 1, 4, 5, 6, 7, 10, 10, 11, 12, 12, 15, 20, 22, 24, 25, 25, 26, 27, 27, 31, 33, 38, 38, 39, 40, 43, 44, 44, 45, 46, 48, 52, 52, 55, 56, 56, 62, 62, 65, 69, 71, 71, 71, 74, 74, 75, 75, 79, 79, 80, 82, 85, 86, 87, 91, 91, 95, 96, 98 Dixon-test Rlow=(x3-x1)/(xn-2-x1), n=60 -> Rlow=(4-0)/(95-0)=4/95=0,042 < Dkr=0,35 Rhigh=(xn-xn-2)/(xn-x3) = (98-95)/(98-4)=3/94=0,0319 Osa A. Hinnangud, usaldusvahemikud, statilised hüpoteesid ja jaotused Tabel 1. Valim xi-juhuslik arv, ni xi kordumiste arv n=60 xmin=0 , xmax=98 xi ni ni*xi ni*xi2 ni(xi-x)2 2282,92 0 1 0 0 84 2188,36 1 1 1 1 84 1916,68 4 1 4 16 84 1830,12 ...
RAKENDUSSTATISTIKA KONSPEKT 1 SISUKORD 1 Kvantitatiivsed meetodid majanduses.........................................................................2 1.1 Põhimõisted .........................................................................................................3 1.2 Mõõtmisskaalad...................................................................................................5 2 Andmekogumit kirjeldavad parameetrid.....................................................................7 2.1 Statistilised keskmised......................................................................................... 7 2.2 Variatsiooninäitarvud...........................................................................................8 3 Valikuuringud............................................................................................................10 3.1...
Juhuslik sündmus on midagi, mis mingi katse tulemusel võib toimuda. Katse on mingi tingimuste kompleksi realiseerumine. Elementaarsündmused on mingid üksteist välistavad sündmused, millest iga katse korral üks tingimata toimub. Juhuslikud sündmused: *vastastikku välistuvad sündmused- ei sisalda samu elementaarsündmusi *vastastikku mittevälistuvad sündmused- sisaldavad samu elementaarsündmusi *sündmuste sisalduvus- kui toimub A, toimub ka B *vastansündmus- kõik elementaarsündmused, mis ei sisaldu sündmuses Tõenäosus iseloomustab sündmuse esinemissagedust katsetes. Tõenäousese määramisviisid: klassikalised(kombinatoorne, geomeetriline, statistiline), mtteklassikalised(subjektiivne,intersubjektiivne) Juhuslikuks suuruseks nim suurust, mis järjekordse katse tulemusel omandab mingi mittennustatava väärtuse mingist võimalikust väärtuste hulgast. Diskreetne juhuslik suurus: võimalike väärtuste hulk on lõplik Pidev juhuslik suur...
OSA A 1. Leian 1.1 keskväärtuse 1 N µ^ = x = xi = 46, 2 N i =1 Excel: AVERAGE 1.2 dispersiooni 1 N ^ 2 = s 2 = ( xi - x )2 = 867,9 N - 1 i =1 Excel: VAR 1.3 standardhälbe sx = sx2 = 29, 46 Excel: STDEV 1.4 mediaani Me = 46 Excel: MEDIAN 1.5 haarde R = xmax - xmin = 99 - 0 = 99 2. Eeldades üldkogumi normaaljaotust ning võttes olulisuse nivooks = 0,10, leian 2.1 keskväärtuse usaldusvahemikud P ( x - µ < µ < x + µ ) = p s 29, 46 µ = t1- ( f ) = 1, 7109 = 10, 29 2 N 24 Student'i teguri leidsin tabelist. P (46, 2 - 10, 29 < µ < ...
Õpilaste matemaatika ja füüsika kontrolltööde hinded on järgmised: Mate- Füüsika maatika 5 4 2 4 4 5 3 4 2 4 4 5 4 5 5 4 5 5 4 5 2 3 4 5 3 4 4 4 4 4 4 4 3 5 2 5 3 5 2 3 2 2 4 5 2 3 4 5 4 4 Õpilaste matemaatika ja füüsika kontrolltööde hinded NB! Kleebi väärtused töölehelt Andmed on järgmised: Mate- Füüsika maatika 5 4 2 4 4 5 3 4 2 4 4 5 4 5 5 4 5 5 4 5 2 3 4 5 3 4 4 4 4 4 4 4 3 5 2 ...
Statistika- teadus massnähtuste kvantitatiivse uurimise meetoditest. Teadus info kogumisest, esitamisest, organiseerimisest, analüüsimisest ja kokkuvõtust, nii, et andmed oleksid kergesti tõlgendavad. Jaguneb oma olemuselt: kirjeldav statistika, järeldav statistika. Statistiline vaatlus- info hankimine, kirjeldav statistika- info ülevaatlik esitamine, tõenäosusteooria- tulevikuga seonduv ebakindluse kirjeldamine, prognoosimine, statistiline otsuste teooria- otsuste tegemine ebakindlas keskkonnas mittetäieliku info tingimustes. Uurimisobjekt- protsess või nähtus, mille kohta soovitakse teha järeldusi. Massnähtus- suurest hulgast vähemalt mõningaid ühiseid omadusi või tunnuseid omavatest nähtustest koosnev nähtus. Üldkogum- nt terve keskkooli klass, Eesti elanikud, Euroopa Liidu riigid. Väljavõtukogum, valim- osa üldkogumi elementidest või osa andmeid. Moodustatakse valikueeskirja alusel, valimimaht- mõõdetavate objektide arv. Statistilin...
Osa A Andmed: 7 2 3 3 1 1 4 3 3 3 6 5 6 1 2 9 7 5 7 8 5 2 4 1 8 7 9 7 4 8 5 3 1 9 3 5 9 5 8 4 6 1 3 0 7 6 9 1. Valimi parameetrite hindamine. Kasutan järgmisi valemeid: Keskväärtus: 44,28 Dispersioon: 772,46 Standardhälve: 27,79 Mediaani ja haarde leidmiseks teeme valimi liikmete ümberjärjestust: 1; 2; 5; 14; 18; 19; 25; 27; 31; 33; 37; 39; 39; 45; 46; 50; 56; 63; 65; 71; 74; 77; 83; 89; 98 Mediaan: 39 Haare: 98 1 = 97 2. Leian keskväärtuse ja dispersiooni usaldusvahemikud (usaldusnivoo = 0.10), eeldades üldkogumi normaaljaotust Keskväärtuse jaoks kasutame t-statistikut f = N 1 = 24 t0.95(24) = 1.711 = 9.51 Keskväärtuse usaldusvahemik arvutatakse valemiga: P(34,77 < < 53,79) = 90% Dispersiooni usaldusvahemiku leidmiseks kasutatakse 2-statistikut f = N 1 =...
Rakendusstatistika arvestusharjutus AGT-1 (Andmete kood: 38 42 36) OSA A 1. Leida keskväärtuse, dispersiooni, standarthälbe, mediaani ja haarde hinnangud Keskväärtus N 1 ´x = N ∑ xi i=1 ´x =53,24 Dispersioon N 1 s x 2= ∑ N−1 i=1 ( x i−´x )2 s x 2 =705,69 Standardhäve s x =√ s x 2 s x =26,56 Mediaan Me=51 Haare R = xmax – xmin = 94 – 9 = 85 2. Keskväärtuse μ usaldusvahemik eeldusel, et põhikogumi jaotus on normaaljaotus ja olulisuse nivoo = 0,10: sx s ( P ´x −t α , N−1 ∙ √N ) < μ< ´x +t α ,...
Mekasutamestatilstilisemeetoteidpeaaguigaseluvaldkonnas,olgu sellekskastoidutehnoloogia,geenitehnoloogiasvõiehitus.Toidutehnikassaab statilstilisemeetoteidkasutadessuurtkasutootja,sesttulemusedannavadtalle teada,millinetoodeonpopulaarnejamillinemitte.Neidtulemusiarvestades, saabtootjalangetadavaliku,kasmuutatoodet,temahindavõiüldsetootmisest mahavõtta. Turuuuringutessaabinformatsioonikajaekettideomanikud,milliseid tooteidtarbijadrohkemeelistavad.Näitekshiljutiselgus,eteestalsteseason kasvanudkodumaisetoidueelistamine(1).Kümnestinimesest7-8eelista kodumaisttoodet.Tarbijadotsivadüheenamotsestkontaktitootjagamis tähendabetEestitoidukuvandonaastategamuutunudpostiiivsemaks.Suur põhjus,mikseelistakasekodumaisttoodangutonseotudtoodanguvärskuseja tuttavamaitsega,samutimängibosakaGMOpuuduminekodumaisest toodangust.Sellepõhjalvõintootjaeeldadajaarvessevõttaseda,ettarbija soovibkodumaistningvõimalikultvärsettoodangut,olllesnousselleees...
docstxt/12537266063011.txt
9 11 12 15 k 17 t0,95(24) 27 X2+ 33 X2- 33 34 38 39 41 44 46 48 52 56 59 66 83 88 97 98 98 99 1 4 N 25 24 xx 49.72 1.710882 σ 868.7933 13.84843 s 29.4753 7 36.41503 M 44 Haare 90 8 2 Δμ 10.08575 Alumine piir 39.63425 9 Ülemine piir 59.80575 σ al piir 572.5944 σ ül piir 1505.661 3 10 t-statistik 0.047497 X -statistik 2 26.0638 N(μ,σ) X2-statistik U(0,100) X2-statistik DN-statistik 0.13 ...
koeffitsient leitakse valemiga: 56. Juhuslike suuruste modeleerimine Monte-Carlo meetodiga Antud on diskreetse suuruse jaotusseadus Vajalik on leida väärtus a uuritavale suurusele. Selleks valitakse JS X, mille matemaatiline ootus on võrdne a: EX = a. 58. Juhuslikud funktsioonid Juhuslikuks funktsiooniks nimetatakse funktsiooni mittejuhusliku argumendiga t, mis iga argumendi väärtusel on juhuslikuks suuruseks. Argumendi t juhuslikku funktsiooni tähistatakse X(t) 59. Rakendusstatistika rakendusi inseneritegevuses Eksperimendi planeerimine: - dispersioonanalüüs; - jaotusele vastavuse hindamine, hüpoteeside kontroll; - regressioon Kvaliteeditagamine: - x-kaardid; - laboritevahelised võrdlused;
Rakendusstatistika kodutöö aruanne Osa A 1. Leida keskväärtuse (aritmeetiline, harmooniline, geomeetriline), dispersiooni, standardhälbe, mediaani, moodi ja haarde hinnangud. Aritmeetiline keskmine 48,633 Geomeetriline 38,58 kesmine 26,53 Harmooniline keskmine Dispersioon 768,372 Standardhälve 27,720 Mediaan 47 Mood 33 Haare 95 Kasutatud valemid: Aritmeetiline keskmine N 1 ^= x´ = x N i =1 i Geomeetriline keskmine Harmooniline keskmine 2 N ^ =s 2= 1 ( x - x´ )2 Dispersioon ¿ N -1 i=1 i ¿ Mediaan on variatsioonirea keskmine element paarituarvulise valimi korral või kahe keskmise elemendi poolsumma paarisarvulise valimi korral. Mood tunnuse kõige sagedamini esinev...
RAKENDUSSTATISTIKA ARVUTUSGRAAFILINE TÖÖ Osa A 1. Valim mahuga N = 25 jrk ni xi ni * xi ni * 2088, 1 1 2 2 2089,25 49 1909, 2 1 4 4 1910,42 69 1656, 3 1 7 7 1657,17 49 1576, 4 1 8 8 1576,75 09 1497, 5 1 9 9 1498,34 69 1204, 6 1 13 13 1204,67 09 882,0 7 1 18 18 882,59 9 561,6 8 1 ...
Statistika üldiseks eesmärgiks on: asjakohastest eeldustest lähtudes leida vaadeldava stohhastilise objekti kohta mingi tõenäosuslik mudel, sh hinnates mudeli arvparameetreid ja kontrollides erinevaid hüpoteese objekti mudeli kohta. Mediaani hinnang: - kasvavalt järjestatud valimi keskelement (kui valimi maht on paaritu arv) - kasvavalt järjestatud valimi keskelementide poolsumma (kui valimi maht on paarisarv) Haare: valimi suurima ja vähima elemendi vahe Statistika põhiteoreem: Empiiriline jaotusfunktsioon FN(x) on teoreetilise (üldkogumi) jaotusfunktsiooni F(x) nihutamata ja mõjus hinnang. Histogramm: Histogramm on enimkasutatav (üldkogumi) jaotustiheduse hinnang. Histogrammi kasutatakse ettekujutuse saamiseks üldkogumi jaotusseadusest ning ta kujutab endast tulpdiagrammi, mille tulpade kõrgused näitavad vastavasse vahemikku sattumise sagedust. 2-jaotus on kasutusel normaaljaotusega juhusliku suuruse dispersiooni hinnangu jaoks usaldu...
Keili Kajava Rakendusstatistika arvutusgraafiline töö 2010 Keili Kajava Osa A 1. Keskväärtus: Dispersioon: Standardhälve: Mediaani leidmiseks rivistan arvud tabelis kasvavasse järjekorda ja leian sealt valimi keskel oleva väärtuse ehk tabeli algusest või lõpust 13.-nda arvu (sest valimi maht on 25). Me=44 Haare: R=99-2=97 2. Keskväärtuse usaldusvahemiku leidmine 1 Keili Kajava (leitud t-jaotuse tabelist) Dispersiooni usaldusvahemiku leidmine (tuleb jaotuse tabelist) (tuleb jaotuse tabelist) 3. 3.1 Kuna |t| < t0,95(24) (|-0,648| < 1,711), siis võib järeldada, et põhikogumi keskväärtus ...
Rakendusstatistika arvestusharjutus AGT-1 Osa A 1. Arvkarakteristikud Keskväärtus N µ = xi pi µ = 44,8 i =1 (Kasutades Exceli funktsiooni AVERAGE) Dispersioon N 2 = ( xi - µ ) 2 p i 2 = 814,4 i =1 (Kasutades Exceli funktsiooni VAR.P lisaks kontrollisin Excelis vahetulemusi kasutades) Standardhälve = 2 = 814,4 = 28,54 Mediaan Me = 41 Variatsioonirea keskmine arv (juhul kui on tegemist paarituarvutlise valimiga) või kahe keskmise elemendi poolsumma (kui on tegemist paarisarvulise valimiga) (Lisaks saadav kasutades Exceli funktsiooni MEDIAN) Haare Valimi suurima ning väikseima elemendi vahe R = x max - x min R= 97 - 0 = 97 2. Jaotuse analüüs Võtan olulisuse nivooks = 0,10 ning eeldan normaaljaotust. Keskväärtuse usaldusvahemik 1) Keskväärtuse ja standardhälbe hinnangud: 1 N 1 N µ^ = xi = xi...
Tabel 1. nxi ni xi*ni ni*xi2 ni*(xi-xk)2 2 1 2 4 2512,01 6 1 6 36 2127,05 7 1 7 49 2035,81 12 1 12 144 1609,61 17 1 17 289 1233,41 18 4 72 1296 4656,70 20 1 20 400 1031,69 22 1 22 484 907,21 27 2 54 1458 1262,03 29 1 29 841 534,53 31 1 31 961 446,05 34 1 34 1156 328,33 36 ...
RAKENDUSSTATISTIKA ARVUTUSGRAAFILINE TÖÖ Osa A Valim A mahuga N=25 variatsioonirida: 69 10 76 79 84 41 15 87 44 49 38 16 58 7 24 19 82 1 40 38 35 87 51 1 69 1. Leida keskväärtuse, dispersiooni, standardhälbe, mediaani ja haarde hinnangud. Keskväärtus: Excel: AVERAGE x = 44,80 Dispersioon: Excel: VAR Sx² = 814,417 Standardhälve: Excel: STDEV Sx = 28,538 Mediaan: Mediaan on variatsioonirea keskmine element paarituarvulise valimi korral või kahe keskmise elemendi poolsumma paarisarvulise valimi korral. Excel: MEDIAN Me = 41 Haare: ...
Osa A. Hinnangud, usaldusvahemikud, statistilised hüpoteesid ja jaotused xi ni xi*ni ni*xi2 ni*(xi-xk)2 0 1 0 0 2907,37 6 1 6 36 2296,33 7 1 7 49 2201,49 8 2 16 128 4217,29 9 1 9 81 2017,81 12 1 12 144 1757,29 13 2 26 338 3348,89 18 1 18 324 1290,25 23 1 23 529 956,05 24 1 24 576 895,21 ...
Osa A 2 i xi ( x i−´x ) 1 1 1921,946 2 1 1921,946 3 7 1431,866 4 10 1213,826 5 15 890,4256 6 16 831,7456 7 19 667,7056 8 24 434,3056 9 35 96,8256 10 38 46,7856 11 38 46,7856 12 41 14,7456 13 41 14,7456 14 44 0,7056 15 49 17,3056 16 51 37,9456 17 58 173,1856 18 69 583,7056 19 69 583,7056 20 76 970,9456 21 79 1166,906 22 82 1380,866 23 84 1533,506 24 87 1777,466 25 87 1777,466 ∑ 1121 19537,36 1. Selle valimi: ∑ xi ni = Keskväärtus: μ= n ∑ xi pi=44,84 N 1 1 Hinnang: ^μ= x´ = N ∑ x i= 25 ∙ 1121=44,8 ...
15 12 33 95 10 87 25 1 62 52 98 94 62 46 11 71 79 75 24 91 40 71 96 12 82 4 6 96 38 27 7 74 20 96 69 86 10 80 25 91 74 85 22 5 39 0 38 75 95 79 xi ni xi*ni ni*xi2 ni*(xi-xk)2 0 0 1 0 0 2132,59 1 1 1 1 1 2041,23 3 3 1 3 9 1864,51 4 4 1 4 16 1779,15 7 7 1 7 49 1535,07 8 8 1 8 64 1457,71 10 10 2 20 200 2617,98 10 13 3 39 507 3302,74 13 15 1 15 225 972,19 13 20 2 40 800 1370,78 13 22 2 44 ...
Korrastatud variatsioonirida: 1; 6; 7; 8; 9; 12; 13; 18; 19; 23; 24; 26; 26; 33; 34; 35; 35; 38; 39; 39; 41; 44; 44; 45; 45; 45; 46; 47; 48; 48; 48; 54; 56; 58; 58; 58; 59; 60; 61; 62; 66; 68; 68; 69; 71; 71; 74; 75; 76; 77; 80; 86; 88; 89; 89; 90; 94; 94; 97; 99. Eksete hindamine 𝑥3 −𝑥1 Min 𝑅𝑙𝑜𝑤 = 𝑥 = 0.06452 < 0.265 𝑛−2 −𝑥1 𝑥𝑛 −𝑥𝑛−2 Max 𝑅ℎ𝑖𝑔ℎ = 𝑥𝑛 −𝑥3 = 0.05435 < 0.265 DCRIT(0.05; 60)= 0.265 Järeldus: Eksed puuduvad, sest nii Rlow kui ka Rhigh on väiksemad kui DCRIT. Tõenäosus, et partiis n=60 esineb vähemalt 2 erinevat väärtust 𝑣äℎ𝑒𝑚𝑎𝑙𝑡 2 𝑒𝑟𝑖𝑛𝑒𝑣𝑎 𝑎𝑟𝑣𝑢 𝑒𝑠𝑖𝑛𝑒𝑚𝑖𝑠𝑒 ℎ𝑢𝑙𝑘 46 𝑃(𝑣äℎ𝑒𝑚𝑎𝑙𝑡 2 𝑒𝑟𝑖𝑛𝑒𝑣𝑎𝑡 𝑎𝑟𝑣𝑢) = = ∗ 100% =76.67 % 𝑘𝑜𝑔𝑢 𝑟𝑒𝑎 𝑎𝑟𝑣𝑢𝑑𝑒 ℎ𝑢𝑙𝑘 60 Tabel 1...
45.04 Keskväärtus 45 ül4 1 Dispersioon 1167.833 1164.123 intervalli 4 Mediaan 38 1 6 Haare 97 2 7 t-statistik -0.706614 3 10 μ 50 4 11 5 12 1.7108820667 15 20 25 0.4780363352 10 H 27 0.4168338365 9 33 1.710882 8 38 36.41503 7 46 13.84843 52 1164.123 6 62 34.11925 5 62 4 71 74 3 80 2 87 ...
OSA A Tabel1 Xi ni ni*xi ni*(xi)2 ni(xi-Xk)2 9 37 1 37 1369 263,74 15 54 3 162 26244 1,73 18 intervalli nr 94 2 188 35344 3322,76 19 1 32 1 32 1024,00 2809,00 30 2 19 1 19 361 1172,38 32 3 33 1 33 1089 409,66 33 4 69 1 69 4761 248,38 37 5 51 1 51 2601 5,02 41 89 1 89 7921 1278,78 43 43 2 86 7396 209,72 43 18 1 18 324 1241,86 49 9 88 ...
RAKENDUSSTATISTIKA Kontrollküsimused 12.2005 1. Tõenäosus ja tõenäosuse põhilised omadused. Tingimuslik tõenäosus. Bayes'i valem 0 P(A) 1; P(AB) = P(A) + P(B), AB= või U. Tingimuslik tõenäosus tõenäosus sündmusele A kui toimus sündmus B - P(A/B) = P(AB) / P(B) 2. Sündmus ja vastandsündmus. Sõltuvad ja mittesõltuvad sündmused. Sündmuste väli P(A/B) = P(A), P(AB) = P(A)P(B) 3. Sündmuste algebralised operatsioonid. Sündmuste summa ja korrutis. C = F D> C =F D> F> 4. Juhuslik suurus X = X(e) 5. Jaotusseadus ja selle esitamine. Jaotusfunktsioon F(x) ja tema põhiomadused. Väärtus x ja tema tõenäosus p. F(x) juhuslikule suurusele X on tõenäosus, et X võtab väärtuse vähem kui antud arvul x. F(x) = P(Xx). P(x´ X x´´) = F(x´´) - F(x´); 0 F(x) 1; F(x1) F(x2) 6. Tõenäosuse tihedusfunktsioon f(x) ja tema põhiomadused. f(x) = lim P(xXx+x)...
Tabel a 1.. ll-*-j f.c-.*r-'U '-,1 -(t. X; h; hiXi lliXi2 n{x,-f,12 0 1 0 0 2532,10 2 1 2 4 2334,82 4 2 I 32 4291,48 5 1 5 25 2053,90 7 1 7 49 1876,62 I 1 I 64 1790,99 11 1 11 121 1546,06 18 1 18 324 1444,58 21 1 ...
Rakendusstatistika arvutusgraafilise töö andmed ja lahenduse kontrollelemendid MHT/2010 3 9 7 4 7 7 Üliõpilane: Üliõpilaskood: Lahenduse esitamiskuupäev: 3.2.2011 Andmete kood: Andmed Andmed-A: valim A mahuga N=25 (arvkarakteristikud, jaotuse analüüs, dispersioonanalüüs) 91 96 79 95 10 39 69 38 40 5 0 96 24 22 75 79 82 86 91 74 75 25 12 71 85 Andmed-B: valimid B1 ja B2 (regressioonimudeli leidmine ja analüüs) xi 2,8 2,2 4,0 1,1 5,1 yi 6,9 6,1 9,8 7,2 15,3 Valim B1: Paarisvalim (xi, yi) regressioonimudeli leidmiseks (mahuga N=5) Valim B2: Korduskatsete sari väljundi dispersiooni leidmiseks (mahuga w=7) 1,3 0,2 0,7 4,2 3,6 2,6 1,...
docstxt/1386939078643.txt
docstxt/129544194986833.txt
MHT0030 RAKENDUSSTATISTIKA ARVUTUSGRAAFILINE TÖÖ Andmete kood: 248199 Osa A 1. Keskväärtus Dispersioon Standardhälve Mediaan Haare 2. Eeldades üldkogumi normaaljaotust ning võttes olulisuse nivooks leian usaldus- vahemikud. Keskväärtuse usaldusvahemik on arvutatud MS Exceli TINV-funktsiooniga: Dispersiooni usaldusvahemik ja on arvutatud MS Exceli CHIINV-funktsiooniga 3
RAKENDUSSTATISTIKA ARVUTUSGRAAFILINE TÖÖ Osa A Valimi A mahuga N=25 variatsioonirida: 22 96 91 75 74 75 25 79 12 38 95 10 71 0 79 24 86 91 96 5 40 85 69 82 39 1.Leida keskväärtuse, dispersiooni, standardhälbe, mediaani ja haarde hinnangud. Keskväärtus: Excel: AVERAGE x=58,36 Dispersioon: Excel: VAR Sx²=1072,74 Standardhälve: Excel: STDEV Sx=32,75 Mediaan: Mediaan on variatsioonirea keskmine element paarituarvulise valimi korral või kahe keskmise elemendi poolsumma paarisarvulise valimi korral. Excel: MEDIAN Me=74 Haare: =96-0=96 R=96 2. Leida keskväärtuse ja dispersiooni usaldusvahemikud (eeldades üldkogumi normaaljaotust ning võttes olulisuse nivooks = 0.10). Keskväärtuse usaldusvahemik...
1 0 0,04 1 0 0,2 2 2 0,08 2 2 0,4 3 7 0,12 3 7 0,6 4 10 0,16 4 10 0,8 5 15 0,2 5 15 6 28 0,24 6 28 7 29 0,28 7 29 8 30 0,32 8 30 9 31 0,36 9 31 10 32 0,4 10 32 11 32 0,44 11 42 12 42 0,48 12 46 13 46 0,52 13 47 14 47 0,56 ...
RAKENDUSSTATISTIKA ARVUTUSGRAAFILINE TÖÖ Osa A Valimi A mahuga N=25 variatsioonirida: 12 6 11 62 20 62 7 98 10 1 52 27 80 25 94 46 38 74 95 33 71 15 96 4 87 1.Leida keskväärtuse, dispersiooni, standardhälbe, mediaani ja haarde hinnangud. Keskväärtus: Excel: AVERAGE x=45, 04 Dispersioon: Excel: VAR Sx²=1164,123 Standardhälve: Sx=34,1193 Mediaan: Mediaan on variatsioonirea keskmine element paarituarvulise valimi korral või kahe keskmise elemendi poolsumma paarisarvulise valimi korral. Me=38 Haare: R=97 2. Leida keskväärtuse ja dispersiooni usaldusvahemikud (eeldades üldkogumi normaaljaotust ning võttes olulisuse nivooks = 0.10). Keskväärtuse usaldusvahemik: = 0,10 t0,1; 24= 1,711 (Studenti tabelist) Dispersiooni usaldusvahemik: ...
OSA A 1. Hindame valimi parameetreid Hindamiseks kasutame järgmised valemid: Keskväärtus: 44,12 Dispersioon: 673,44 Standardhälve: 25,95 Mediaani ja haarde leidmiseks teeme valimi liikmete ümberjärjestuse: Mediaan: 51 Haare: 92-4= 88 2. Leiame keskväärtuse ja dispersiooni usaldusvahemikud (usaldusnivoo = 0,10), eeldades üldkogumi normaaljaotust Keskväärtuse jaoks kasutame t-statistikut f = N 1 = 24 t0,95(24) = 1,7109 = 8,88 (poollaius) P(35,24 < < 53) = 0,9 Dispersiooni jaoks kasutame 2-statistikut f = N 1 = 24 20.95(24) = 36,415 20.05(24) = 13,848 P (443,9 < 2 < 1167,15) = 0,9 3. Kontrollime hüpoteese keksväärtuse ja dispersiooni kohta, eeldades üldkogumi normaaljaotust, ja kasutades usaldusnivood = 0,10 3.1 H0: = 50; H1: 50 Kontrollimiseks kasutame t-statistikut: t = 1,1329 f = N 1 = 24 Kriitiline t-statistiku väärtus t0,95(24) = 1,711 Kuna t < tkr, sii...
n= 60 Andmed (165): Väärtus (xi) Kordusi (ni) ni*xi ni*xi^2 1 1 1 1 1 6 6 1 6 36 7 7 1 7 49 8 8 1 8 64 9 9 1 9 81 12 12 1 12 144 13 13 1 13 169 18 18 1 18 324 19 19 1 19 361 23 23 1 23 529 24 24 1 24 576 26 26 2 52 1352 26 33 1 ...
RAKENDUSSTATISTIKA ARVUTUSGRAAFILINE TÖÖ Osa A Valimi A mahuga N=25 variatsioonirida: 75 10 79 32 32 0 68 94 96 2 99 53 31 15 48 47 29 70 7 75 28 30 42 47 46 1.Leida keskväärtuse, dispersiooni, standardhälbe, mediaani ja haarde hinnangud. Keskväärtus: Excel: AVERAGE x=46,20 Dispersioon: Excel: VAR Sx²=867,9167 Standardhälve: Sx=29,46 Mediaan: Mediaan on variatsioonirea keskmine element paarituarvulise valimi korral või kahe keskmise elemendi poolsumma paarisarvulise valimi korral. Me=46 Haare: R=99 2. Leida keskväärtuse ja dispersiooni usaldusvahemikud (eeldades üldkogumi normaaljaotust ning võttes olulisuse nivooks = 0.10). Keskväärtuse usaldusvahemik: = 0,10 t0,1; 24= 1,711 (Studenti tabelist) Dispersiooni usaldusvahemik: ...
Esmakontakti Ettevõtte Ostude Ostude summa Kliendi hinnang kuupäev suurus arv kokku teenindusele 25.01.2011 3 16 229,50 1 18.01.1999 28 114 5 009,80 6 1.01.2010 7 15 148,50 6 16.10.2006 825 62 2 000,00 6 11.10.2005 140 26 2 106,10 6 17.10.2011 14 2 69,90 4 12.04.2010 866 2 643,50 1 12.02.2009 2 11 1 199,50 5 1.06.2003 1191 110 4 291,40 5 12.04.2010 671 1 598,20 6 12.04.2010 1095 12 867,10 5 1.04.2006 40 53 319,40 5 1.07.1998 38 15 8 778,40 2 20.11.2001 35 ...
RAKENDUSSTATISTIKA ARVUTUSGRAAFILINE TÖÖ Osa A Valimi A mahuga N=25 variatsioonirida: 54 32 30 54 89 54 9 94 51 69 19 15 33 88 37 87 94 49 18 85 43 43 41 62 81 1.Leida keskväärtuse, dispersiooni, standardhälbe, mediaani ja haarde hinnangud. Keskväärtus: Excel: AVERAGE x=53,24 Dispersioon: Excel: VAR Sx²=705,69 Standardhälve: Sx=26,56 Mediaan: Mediaan on variatsioonirea keskmine element paarituarvulise valimi korral või kahe keskmise elemendi poolsumma paarisarvulise valimi korral. Me=51 Haare: R=94-9=85 2. Leida keskväärtuse ja dispersiooni usaldusvahemikud (eeldades üldkogumi normaaljaotust ning võttes olulisuse nivooks = 0.10). Keskväärtuse usaldusvahemik: = 0,10 t0,1; 24= 1,711 (Studenti tabelist) Dispersiooni usaldusvahemik: = 0,10 ja (leitud Exceli...
45,04 Keskväärtus 45 ül4 1 Dispersioon 1167,833 1164,123 intervalli nr vahemik 4 Mediaan 38 1 0-20 6 Haare 97 2 20-40 7 t-statistik -0,706614 3 40-60 10 50 4 60-80 11 5 80-100 12 1,7108820799 15 20 10 Histogra 25 0,4780363352 9 27 0,4168338365 8 33 1,710882 7 38 36,41503 6 46 13,84843 5 52 1164,123 62 ...
Andmed-A N= 25 jrk. Dispersioon= 37 9 1. Keskväärtus= 53,24 263,74 54 15 0,58 94 18 1661,38 32 19 451,14 19 30 1172,38 33 32 409,66 69 33 248,38 51 37 5,02 89 41 1278,78 43 43 104,86 18 43 ...
Xxxxx xxxxx xxxx MHT 0031 RAKENDUSSTATISTIKA ARVUTUSGRAAFILINE TÖÖ Osa A 1. 1) Keskväärtus =46,20 2)Dispersioon =867,92 3)Standardhäve =29,46 4)Mediaan Mediaan on variatsioonirea keskmine element paarituarvulise valimi korral või kahe keskmise elemendi poolsumma paarisarvulise valimi korral. Me=46
RAKENDUSSTATISTIKA ARVUTUSGRAAFILINE TÖÖ Osa A 0 2 7 1 0 1 5 2 8 2 9 3 0 3 1 3 2 3 2 4 2 4 6 4 7 4 7 4 8 5 3 6 8 7 0 7 5 7 5 7 9 9 4 9 6 9 9 Valimi A mahuga N=25 variatsioonirida: 1.Leida keskväärtuse, dispersiooni, standardhälbe, mediaani ja haarde hinnangud. Keskväärtus: Excel: AVERAGE x = 46,20 Dispersioon: Excel: VAR Sx² = 867,92 Standardhälve: Sx = 29,46 Mediaan: Mediaan on variatsioonirea keskmine element paarituarvulise valimi korral või kahe keskmise elemendi poolsumma paarisarvulise valimi korral. Me = 46 Haare: R= 99 - 0 = 99 2. Leida keskväärtuse ja dispersiooni usaldusvahemikud (eeldades üldkogumi normaaljaotust ning võttes olulisuse nivooks = 0.10). Keskväärtuse usaldusvahemik: = 0,10 Dispersiooni usaldusvahemik: ...
Aine Rakendusstatistika MHT0031 Arvestusharjutus AGT-2 Nimi xxx Kood Rühm Imiteerimisvalemi kood TRAP S0 0,25 A 7 T0 4 B 6 LS 0,25 D 2 LT 1 n1 n2 n3 n4 n5 n6 1 0 3 6 3 0 A 7 B 6 D 2 T0 4 S0 0,25 U1 0,82262 U2 0,684927 D=2 1. T0=4 S0=0,25 Y=g(X)=sign(X)D1-T|X|T x y Teisendusfunktsiooni y=sign(x)D1-T|x|T graafik baasväärtuste -10 0,00 -9 0,00 0 -8 0,00 -7 0,00 0 -6 0,00 -5 0,00 ...
0, 1, 1, 4, 5, 5, 6, 7, 10, 10, 11, 12, 12, 15, 17, 20, 22, 23, 24, 25, 25, 25, 27, 33, 38, 38, 39, 39, 40, 43, 44, 44, 46, 52, 62, 62, 69, 69, 71, 71, 74, 74, 75, 75, 78, 78, 79, 79, 80, 82, 82, 85, 86, 87, 91, 91, 96, 96, 96, 98 Dixon-test Rlow=(x3-x1)/(xn-2-x1), n=60 -> Rlow=(1-0)/(96-0)=1/96=0,01 -> x1 ekse, sest et Rlow =0,01> Dkr=0,35 Osa A. Hinnangud, usaldusvahemikud, statilised h üpoteesid ja jaotused Tabel 1. Valim xi-juhuslik arv, ni xi kordumiste arv xmin=0, xmax=98 xi ni ni*xi ni*xi² ni(xi-x)² 0 1 0 0 2254.35 4320.78 1 2 2 2 1 4 1 4 16 1890.51 3609.10 5 2 10 50 1 6 1 6 36 1720.59 7 1 7 49 1638.63 ...