n= 60 Andmed (165): Väärtus (xi) Kordusi (ni) ni*xi ni*xi^2 1 1 1 1 1 6 6 1 6 36 7 7 1 7 49 8 8 1 8 64 9 9 1 9 81 12 12 1 12 144 13 13 1 13 169 18 18 1 18 324 19 19 1 19 361 23 23 1 23 529 24 24 1 24 576 26 26 2 52 1352 26 33 1 33 1089 33 34
64; 1; 64; 40; 66; 66; 57; 13; 30; 49; 0; 68; 22; 73; 98; 20; 71; 45; 32; 95; 7; 70; 61; 22; 30; 84; 20; 89; 29; 32; 62; 55; 78; 55; 76; 11; 68; 71; 44; 98; 83; 52; 99; 54; 40; 32; 52; 48; 96; 62; 46; 31; 88; 73; 4; 61; 68; 75; 53; 31 Osa A. Hinnangud, usaldusvahemikud, statistilised hupoteesid ja jaotused. Korrastada algandmed arvreaks suuruse jargi ning hinnata eksed tabel 1 xi ni ni*xi ni*xi2 ni(xi-x)2 0 1 0 0 2816,0711 1 1 1 1 1 2710,93778 4 1 4 16 2407,53778 7 1 7 49 2122,13778 11 1 11 121 1769,60444 13 1 13 169 1605,33778 20 2 40 800 2186,80889 22 2
Osa A. Hinnangud, usaldusvahemikud, statistilised hüpoteesid ja jaotused xi ni xi*ni ni*xi2 ni*(xi-xk)2 0 1 0 0 2907,37 6 1 6 36 2296,33 7 1 7 49 2201,49 8 2 16 128 4217,29 9 1 9 81 2017,81 12 1 12 144 1757,29 13 2 26 338 3348,89 18 1 18 324 1290,25 23 1 23 529 956,05 24 1 24 576 895,21 26 2 52 1
Regressioonimudel avaldub võrrandina: y = 1,930+2,085x Statistilised meetodid ja mudelid ning nende rakendamine materjalitehnoloogia valdkonnas Materjalitehnoloogia Tallinna Tehnikaülikoolis keskendub eelkõige puidu ja plasti uurimisele, kuid ei jäta tähelepanuta ka muid üldkasutatavaid materjale. Ainete omaduste uurimine on vajalik toore materjali tootmisest kuni valmis toote vormimiseni. Nii uute materjalide väljatöötlemisel kui ka olemasolevate katsetamisel on statistika aja kokkuhoiuks vajalik. Rakendusstatistika põhiline eesmärk on andmete kogumine ja kirjeldamine. Andmeid saab koguda kaht eri viisi: eksperimentaalselt ja loomulikult. Esimesel juhul katseandmeid mõjutatakse soovitavas suunas. Uute toodete ning nende materjalide katsetamist võib läbi viia kahel eri viisil. Näiteks puidust vibu katsetamine maksimaalsete painutamistsüklite uurimiseks viiakse tavaliselt läbi vastavate masinatega, kuna katse võib
Rakendusstatistika kodutöö aruanne Osa A 1. Leida keskväärtuse (aritmeetiline, harmooniline, geomeetriline), dispersiooni, standardhälbe, mediaani, moodi ja haarde hinnangud. Aritmeetiline keskmine 48,633 Geomeetriline 38,58 kesmine 26,53 Harmooniline keskmine Dispersioon 768,372 Standardhälve 27,720 Mediaan 47 Mood 33 Haare 95 Kasutatud valemid: Aritmeetiline keskmine N 1 ^= x´ = x N i =1 i Geomeetriline keskmine Harmooniline keskmine 2 N ^ =s 2= 1 ( x - x´ )2 Dispersioon ¿ N -1 i=1 i ¿ Mediaan on variatsioonirea keskmine element paarituarvulise valimi korral või kahe keskmise elemendi poolsumma paarisarvulise valimi korral. Mood tunnuse kõige sagedamini esinev väärtus Haare
Variant 23 0, 1, 4, 5, 6, 7, 10, 10, 11, 12, 12, 15, 20, 22, 24, 25, 25, 26, 27, 27, 31, 33, 38, 38, 39, 40, 43, 44, 44, 45, 46, 48, 52, 52, 55, 56, 56, 62, 62, 65, 69, 71, 71, 71, 74, 74, 75, 75, 79, 79, 80, 82, 85, 86, 87, 91, 91, 95, 96, 98 Dixon-test Rlow=(x3-x1)/(xn-2-x1), n=60 -> Rlow=(4-0)/(95-0)=4/95=0,042 < Dkr=0,35 Rhigh=(xn-xn-2)/(xn-x3) = (98-95)/(98-4)=3/94=0,0319 Osa A. Hinnangud, usaldusvahemikud, statilised hüpoteesid ja jaotused Tabel 1. Valim xi-juhuslik arv, ni xi kordumiste arv n=60 xmin=0 , xmax=98 xi ni ni*xi ni*xi2 ni(xi-x)2 2282,92 0 1 0 0 84 2188,36 1 1 1 1 84 1916,68 4 1 4 16 84 1830,12 5 1 5 25
RAKENDUSSTATISTIKA ARVUTUSGRAAFILINE TÖÖ Osa A 0 2 7 1 0 1 5 2 8 2 9 3 0 3 1 3 2 3 2 4 2 4 6 4 7 4 7 4 8 5 3 6 8 7 0 7 5 7 5 7 9 9 4 9 6 9 9 Valimi A mahuga N=25 variatsioonirida: 1.Leida keskväärtuse, dispersiooni, standardhälbe, mediaani ja haarde hinnangud. Keskväärtus: Excel: AVERAGE x = 46,20 Dispersioon: Excel: VAR Sx² = 867,92 Standardhälve: Sx = 29,46 Mediaan: Mediaan on variatsioonirea keskmine element paarituarvulise valimi korral või kahe keskmise elemendi poolsumma paarisarvulise valimi korral. Me = 46 Haare: R= 99 - 0 = 99 2. Leida keskväärtuse ja dispersiooni usaldusvahemikud (eeldades üldkogumi normaaljaotust ning võttes olulisuse nivooks = 0.10). Keskväärtuse usaldusvahemik: = 0,10 Dispersiooni usaldusvahemik: = 0,10 ja (leids
0, 1, 1, 4, 5, 5, 6, 7, 10, 10, 11, 12, 12, 15, 17, 20, 22, 23, 24, 25, 25, 25, 27, 33, 38, 38, 39, 39, 40, 43, 44, 44, 46, 52, 62, 62, 69, 69, 71, 71, 74, 74, 75, 75, 78, 78, 79, 79, 80, 82, 82, 85, 86, 87, 91, 91, 96, 96, 96, 98 Dixon-test Rlow=(x3-x1)/(xn-2-x1), n=60 -> Rlow=(1-0)/(96-0)=1/96=0,01 -> x1 ekse, sest et Rlow =0,01> Dkr=0,35 Osa A. Hinnangud, usaldusvahemikud, statilised h üpoteesid ja jaotused Tabel 1. Valim xi-juhuslik arv, ni xi kordumiste arv xmin=0, xmax=98 xi ni ni*xi ni*xi² ni(xi-x)² 0 1 0 0 2254.35 4320.78 1 2 2 2 1 4 1 4 16 1890.51 3609.10 5 2 10 50 1 6 1 6 36 1720.59 7 1 7 49 1638.63 2809.50 10
Kõik kommentaarid