Keemia alused. Põhimõisted ja -seaduspärasused I. Termodünaamika alused 1. Termodünaamika põhimõisted Süsteem – vaadeldav universumi osa (liigitus: avatud, suletud, isoleeritud); faas – ühtlane süsteemi osa, mis on teistest osadest eralduspinnaga lahutatud ja erineb teistest osadest oma füüsikalis-keemiliste omaduste poolest; olekuparameetrid – iseloomustavad süsteemi termodünaamilist olekut: temperatuur (T), rõhk (p), ruumala (V), aine hulk (koostis) (n); olekuvõrrandid – olekuparameetrite vahelised seosed.
nimetatakse reaktsiooni järguks antud aine järgi. Liites kokku reaktsiooni järgud kõigi reageerivate ainete järgi, saadakse reaktsiooni üldine järk. Seega on reaktsiooni järk suurus, mis võrdub reageerivate ainete kontsentratsioonide astmenäitajate summaga reaktsiooni kineetilises võrrandis. Kui üks reageeriv aine on tugevas liias (näiteks H2O TÜ Füüsikalise keemia instituut 1 Keemia alused I. KEEMILINE KINEETIKA JA TASAKAAL hüdrolüüsireaktsioonide korral lahjades vesilahustes), siis tema kontsentratsioon reaktsiooni vältel praktiliselt ei muutu ja reaktsiooni järk selle aine järgi on null. Reaktsioonid võivad olla esimest, teist ja kolmandat ning ka nullindat järku. Reaktsiooni järk võib olla ka murdarvuline. Esimest järku reaktsioonide korral (näiteks A B + D) avaldub kiirus
ükshaaval lahusesse, sest vesi nôrgendab nende sidemeid. 2) Polaarsed kovalentsed ained N: H+Cl- ... vesi kisub jälle laiali...mida polaarsem on lahusti, seda tugevamini. Puhas HCl on kovalentne ja koosneb molekulidest, mitte ioonidest. Tugevad el. lüüdid: tugevad happed (HCl, HBr), enamik soolasid, leelised (LiOH, KOH, NaOH), leelismullad (Br(OH)2, Sr(OH2)). Nôrgad el. lüüdid: nôrgad happed (H2S, H2CO3), org. happed (CH3COOH), môned soolad (HgCl2), nôrgad alused (Cu(OH)2, Al(OH)2), keskmised happed (HF, HNO2, H2SO3). II Nôrgad elektrolüüdid. (protsess on pöördeline) Tasakaal kulgeb nôrgemate el. lüütide tekke suunas. N: 1) NaOH + CH3COOH < CH3COONa + H2O (v. nôrk. el. lüüt.) = Na+ + OH- + CH3COOH < Na+ + CH3COO- +H2O. (kk. on aluseline (OH-, H2O)). N: 2) NH4Cl + H2O > NH3H2O + HCl (happeline). N: 3) CH3COONH4 + H2O CH3COOH + NH3H2O (neutraalne, sest nôrga happe vôi nôrga aluse soolad). Dissots. konstant on happele isel
Üldine keemia. Näidisküsimused. Termodünaamika 1. Miks gaas paisumisel jahtub (kuidas muutub isoleeritud süsteemi paisumisel tema siseenergia)? Gaas teeb paisumisel tööd välisrõhu vastu, mistõttu tema siseenergia väheneb. Siseenergia muut U = 0 ehk isoleeritud süsteemis siseenergia on jääv ei muutu. 2. Miks sulamisprotsessis H U, kuid aurustumisprotsessis on nad erinevad? H U ainult juhul, kui meil on konstantse ruumalaga süsteem. 3. Milline on H märk järgmistes protsessides? Miks?
Bioenergeetika Anname gaasile võimaluse paisuda, vähendades Termodünaamika üldmõisted koormust. Gaasi ruumala suureneb V võrra ning Termodünaamika teadus, mis uurib eri energiavormide ta teeb seetõttu tööd koormuse tõstmiseks h vastastikuseid üleminekuid erinevates füüsikalistes ja keemilistes protsessides. Termodünaamika uurimisobjekt võrra. Seda tööd nimetatakse gaasi paisumistööks ja on süsteem.
Mittemetallide värvused võivad olla väga erinevad (S-kollane, C-must). Mittemetallide omadused: · võivad looduses esineda mitmete allotroopidena. Allotroopia keemilise elemendi esinemine mitme lihtainena. Näiteks: süsinik teemant, grafiit. · enamik mittemetalle on halvad elektri- ja soojusjuhid. · kõige aktiivsemad mittemetallid on VIIA rühmas. · kõige vähemaktiivsemad (keemiliselt inertsed) on VIIIA rühma mittemetallid (väärisgaasid). 21. Alused. Alus on keemiline aine, mis vesilahustes dissotsieerudes annab lahusesse hüdroksiidioone. Kõige tuntumad alused on hüdroksiidid, nt. ammoniaakhüdraat (NH3 H2O) Hüdroksiid on mittemolekulaarne kristalne aine, mis annab dissotsieerumisel lahusesse metalli katioone ja hüdroksiidioone. Leelis on veel lahustuv tugev alus. Leelised on leelis- ja leelismuldmetallide hüdroksiidid, nt. NaOH, KOH, Ca(OH)2. Need on ioonsed ained, mille kristallvõre koosneb metalli
Keemilise reaktsiooni entalpia on soojusefekt, mis kaasneb keemilise reaktsiooniga (kui rõhk ja temperatuur ei muutu). St. tekkentalpia soojusefekt 1 mooli aine tekkimisel puhastest lihtainetest nende standardolekus. St. põlemisentalpia soojusefekt 1 mooli orgaanilise aine täielikul oksüdeerumisel CO2-ks ja veeks (ja lisaks N2-ks, kui ühend sisaldab lämmastikku). 19.Termodünaamika II seadus, termodünaamiliselt pöörduvad ja mittepöörduvad protsessid? Termodünaamika II seadus. Ei ole võimalik selline protsess, kus kogu soojus muutetakse tööks ning pole võimalik kanda soojust üle külmemalt kehalt soojemale ilma tööd tegemat. Isoleeritud süsteemo entroopia kasvab ajas. Termodünaamilistelt pöörduvad protsessid: *Carnot' ringprotsess on ideaalmudel termodünaamika II seaduse kirjeldamiseks. Üks mool ideaalset gaasi paisub isotermiliselt (AB) ja adiabaatiliselt (BC) ning seejärel surutakse kokku isotermiliselt (CD) ning
w rev - w 0 1. Selgitage järgmisi keemilise termodünaamika kuumemalt kehale külmemale. Kui gaas paisub mahust põhimõisted:termodünaamiline süsteem, vaakumisse siis x suureneb , q paisub, saabub tasakaal. tasakaal,temperatuur. 5. Töö, soojuse ja siseenergia arvutamine ideaalgaasile , kokkusurumisel: Kuidas on defineeritud absoluutne temperatuuriskaala? isotermilise, isokoorilise ja isobaarilise protsessi korral
Kõik kommentaarid