Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

"olekufunktsioonid" - 27 õppematerjali

olekufunktsioonid — suurused, mille väärtus on üheselt määratud ainult süsteemi olekuga ega sõltu sellest, millisel teel see olek saavutatud on. Neid ei saa eksperimentaalselt mõõta ega harilikult ka arvutada; arvutada saab nende muutust.
thumbnail
19
docx

Füüsikaline keemia konspekt

Füüsikaline keemia Füüsikaliseks keemiaks nimetatakse teadusharu, mille uurimisobjektiks on aine ehitus ja keemiliste protsesside kulgemise üldised füüsikalised seaduspärasused. (adsorptsioon, aurustumine, sulamine, difusioon, elektrolüüs jne) Termodünaamika Termodünaamika uurib ainult makrosüsteeme, mitte üksikuid molekule või nende osi. Termodünaamika on teadus energia muundumistest. Termodünaamiline süsteem ­ süsteem, mida saab ümbritsevast keskkonnast eraldada ja eksperimentalselt uurida. Termodünaamika ajalugu Õpetus termiliste protsesside soojusefektidest ja tööst. Klassikaline termodünaamika tekkis 19.sajandi keskel. Tänapäeval uurimisobjekt: erinevate energiavormide vastastikused üleminekud mitmesugustes füüsikaliste ja keemilistes protsessides. Süsteemid ja ümbritsev keskkond Süsteemide jaotus teda väliskeskkonnaga siduvate protsesside järgi: ­ avatud - toimub nii energia- kui ka ainevahetus ümbritseva keskkonnaga ­ suletud - p...

Keemia → Füüsikaline ja kolloidkeemia
114 allalaadimist
thumbnail
4
doc

Ideaalse gaasi olekuvõrrand

Ideaalse gaasi olekuvõrrand: pV=RT, kus p ­ rõhk, V ­ ruumala, R ­ gaasikonstant T ­ temperatuur P, V, T ­ gaasi olekut iseloomustavad suurused - olekufunktsioonid Termodünaamiliste süsteemide oleku ja käitumise kirjeldamiseks kasutatakse, nagu me nägime gaasi puhul, olekuvõrrandit. Olekuvõrrand seob omavahel gaasi rõhku (p), ruumala (V) ja temperatuuri (T). Olekuvõrrand määrab, kuidas need suurused, mida osatakse ka mõõta, muutuvad erinevates tingimustes ­ protsessides. Me saame rääkida isotermilistest, isobaarilistest, isokoorilistest ja adiabaatsetest protsessidest. Olekuvõrrand kirjeldab gaasi käitumist nendes protsessides.

Kategooriata → Üldloodusteadus
240 allalaadimist
thumbnail
3
docx

Rakenduskeemia

5) Katmine korrosiooni-kindlama metalliga (Cr, Ni) ; inhibiitorite kasutamine Korrosiooni puhastamise liigid : galvaaniline, mehaaniline, elektrolüütiline, keemiline puhastus. Termodünaamika Süsteem võib olla : avatud (aine ja energiavahetus süsteemi ja keskkonna vahel ) ; suletud ( toimub energiavahetus ) ; isoleeritud (vahetust ei toimu ) . Olekufunktsioonid ­ suurused, mis ei sõltu oleku saavutamise viisist : siseenergia, entalpia, entroopia, vabaenergia. Töö ja soojus EI ole olekufunktsioonid ! Olekuparameetrid : temperatuur(T), rõhk(P), ruumala(V), ainehulk(n) . Siseenergia- süsteemi sumaarne võime teha tööd (U). Ühikuks 1 Dzaul. Siseenergia on süsteemi koguenergia. Me ei saa mõõta süsteemi koguenergiat, kuid saame mõõta energiamuutust. Kui tehakse tööd, siis süsteemi siseenergia KASVAB ! Soojus ­ energia, mis kantakse üle tänu temperatuuri erinevusele ­ energia voolab soojusena kõrgema temperatuuri osalt madalamale. Ühikuks 1 Dzaul.

Keemia → Rakenduskeemia
67 allalaadimist
thumbnail
5
doc

Ãœldloodusteaduse spikker II kT

Mullreaktor ­ rakus toimuvad reaktsioonid, rakk on reaktor, rakus toimub ainevahetus, metabolism. Rakutsükkel ­ koordineeritud sündmusteahel, mis tagab rakkude paljunemise. Kirjeldage biopolümeeride struktuuritasemeid. Kuidas Te seletate seda, et biopolümeerid on aperioodilised kristallid. Primaar-, sekundaar-, tertsiaar-, kvaternaarstruktuur. Sest nad on kindla struktuuriga, aga monomeeride järjstus pole perioodiline. N: valgud. Ideaalse gaas, olekuvõrrand, olekufunktsioonid ­ p, T, V, U (siseenergia). kineetilise teooria alused ­ rõhu, temperatuuri ja siseenergia avaldised osakeste liikumisolekute kaudu. 1) Ideaalne gaas on reaalse gaasi lihtsaim mudel, kus lihtsuse mõttes oletatakse, et : Molekulidel on lõpmata väikeste elastsete kerakeste omadused. Molekulide liikumine on kulgliikumine. Ideaalne gaas on lõpmatult kokkusurutav. Molekulide vastasmõju seisneb ainult nende omavahelistes elastsetes põrgetes . Ideaalset gaasi pole võimalik veeldada

Kategooriata → Üldloodusteadus
64 allalaadimist
thumbnail
8
doc

Füüsikaline keemia TTÜ lühikonspekt

Füüsikaline keemia Kristian Leite Materjalid/ainet andis ­ Kalju Lott TD mõisted Termodünaamiline süsteem ­ ruumiosa, mida iseloomustavad kindlad termodünaamilised suurused. See on eraldatud ümbritsevast piirpinnaga. Olekuparameetrid ­ termodünaamilist süsteemi iseloomustavad suurused n. U,H,G,F. Olekuvõrrand ­ Parameetrite omavaheline sõltuvus n. ideaalgaasi olekuvõrrand Olekufunktsioon ­ süsteemi olekust sõltuv suurus, sellele vastandub protsessifunktsioon (vt.all). On täisdiferentisaalina Protsessifunktsioon ­ süsteemis toimuvat protsessi iseloomustav suurus, sõltub protsessi läbiviimise viisist, tähistatakse väiketähega (töö w, soojushulk q) Homogeenne süsteem ­ süsteem, kus omadused on kõikjal ühesugused või muutuvad ühtlaselt Heterogeenne süsteem ­ süsteem, mille võib jaotada erinevate omadustega osadeks (faasid) Faasid ­ süsteemi osad, mida iseloomustavad faasisiseselt ühtlased termodünaamil...

Keemia → Füüsikaline ja kolloidkeemia
211 allalaadimist
thumbnail
17
ppt

Energia

Muutus tähendab erinevust süsteemi lõppoleku ja algoleku vahel. Näiteks E = E(lõppolek) ­ E(algolek) Süsteemi olek on antud kõikide ainete hulkade ja kahega kolmest järgnevast parameetrist ­ rõhk P (Pa), temperatuur T (K), ruumala V (m3). Termodünaamika esimene seadus Ehk energia jäävuse seadus: isoleeritud süsteemi energia on jääv Suletud süsteemis võib siseenergia muutuda, kas soojuse q (J) või töö w (J) kaudu: E = q ­ w NB! Soojus ja töö ei ole olekufunktsioonid ja mõlemad sõltuvad sellest kuidas antud olek on saavutatud Paisumistöö w = PV Entalpia H on reaktsiooni soojusefekt konstantsel rõhul: H = E + PV Entalpia on olekufunktsioon Biokeemilistes protsessides on H ligikaudu võrdne E Näiteks palmitiinhappe oksüdatsioon: CH3(CH2)14COOH (tahke) + 23O2 (gaas) 16CO2 (gaas) + 16H2O (vedelik) H = -9958,7 kJ/mol ja E = -9941,4 kJ/mol NB! Muutused energiat esitatakse reeglina ühe mooli aine kohta J/mol, kJ/mol

Keemia → Keemia alused
21 allalaadimist
thumbnail
16
docx

TERMODÜNAAMIKA PÕHIMÕISTED

TERMODÜNAAMIKA PÕHIMÕISTED keemiline termodünaamika – käsitleb erinevate energiavormide vastastikust üleminekut keemilistes protsessides. üldisemas mõttes uurib soojuse ja töö suhet ja vastastikust üleminekut. süsteem – vaadeldav ruumi/universumi osa 1) avatud süsteem – keskkonnaga toimub nii aine- kui energiavahetus 2) suletud süsteem – keskkonnaga toimub energiavahetus 3) isoleeritud süsteem – keskkonnaga ei toimu ei aine- ega energiavahetust või 1) diatermiline süsteem – soojusvahetus väliskeskkonnaga võimalik 2) adiabaatne süsteem – soojusvahetus väliskeskkonnaga puudub termodünaamiline süsteem – süsteem, mida saab ümbritsevast keskkonnast kuidagi eraldada ja eksperimentaalselt uurida 1) homogeenne süsteem – omadused on samad kõikides ruumiosades või muutuvad ühest kohast teise üleminekul pidevalt 2) heterogeenne süsteem – koosneb mitmest erisugu...

Füüsika → Füüsika
9 allalaadimist
thumbnail
6
doc

Keemia alused: Termodünaamika

1. Mis on süsteem ja keskkond termodünaamikas? Kuidas süsteeme klassifitseeritakse? Tooge näiteid! ­ Süsteem on see osa, millest oleme huvitatud (kapp). Kõik ülejäänu on ümbritsev keskkond (tuba kapiga jne). Süsteem võib olla: 1) avatud, kui ta vahetab (võib vahetada) keskkonnaga ainet ja energiat (auditoorium); 2) suletud, kui toimub ainult energiavahetus(õllepudel); 3)isoleeritud, kuimingit vahetust ei toimu(suletud termos). 2. Selgitage järgmisi mõisteid: olekuparameetrid, olekufunktsioonid, protsessi funktsioonid, intensiivsed ja ekstensiivsed suurused. Tooge näiteid! ­ Olekuparameetrid - Neande all mõistetakse füüsikalisi makrosuurusi, mis määravad kindlaks töötava keha oleku, mida saab mõõta.; Olekufunktioonid ­ süsteemi olekufunktsioonid on sellised süsteemi olekut iseloomustavad suurused, mis ei sõltu oleku saavutamise viisist: tihedus, siseenergia (kõrgus merepinnast)

Keemia → Keemia alused
14 allalaadimist
thumbnail
22
docx

Füüsikaline ja kolloidkeemia

puudub soojusvahetus ümbritseva keskkonnaga. Suletud süsteemi siseenergia muutus ∆ U üleminekul algolekust lõppolekusse on võrdne süsteemile antava soojushulga q ja tema heaks tehtava töö w summaga. Süsteem võib ka energiat kaotada, st teha tööd või anda ära mingi osa soojusest. Seega muutub suletud süsteemi energia energiavahetuse tõttu keskkonnaga. 3. Protsessifunktsioonid. Energia, töö, soojus. Termodünaamika I seadus. Olekufunktsioonid. Paisumistöö. Kalorimeetria. Siseenergia. Nimetage ja seletage termodünaamika esimesest seadusest tulenevaid järeldusi Isohooriline, isobaariline ja isotermiline. Energia on keha või jõu võime teha tööd. Siseenergia – Siseenergia muut on võrdne soojusefektiga konstantsel ruumalal qv=∆U, süsteemi summaarne võime teha tööd, süsteemi koguenergia. Kui teeme tööd, siis siseenergia kasvab

Füüsika → Füüsika
10 allalaadimist
thumbnail
5
doc

Rakenduskeemia

tekkevabaenergiagaKuidas keemilised reaktsioonid toimuvad? Selleks, et keemilised reaktsioonid toimuksid on vaja aktiivsete osakeste kokkupõrkeid Selle tulemusena toimub aatomitevaheliste keemiliste sidemete tekkimine ja katkemine Keemiliste sidemete lõhkumiseks kulutatakse energiat Keemiliste sidemete tekkimisel eraldub energiat ja osakesed lähevad püsivamasse olekusse Süsteemi olekut ja tema muutus saab iseloomustada olekuparameetriga ja olekufunktsiooniga. Olekufunktsioonid on arvutavad suurused. Süsteemi olekufunktsioonideks on sellised süsteemi olekut iseloomustavad suurused, mis ei sõltu oleku saavutamise viisist: siseenergia, entalpia, entropia, vabaenergia. Olekufunktsiooni erinevus kahe oleku vahel sõltub ainult nendest olekutest, aga mitte viisist, kuidas ühest teise liiguti. Süsteemi summaarset võimet teha tööd nimetatakse tema siseenergiaks U. Siseenergia ühikuks on dzaul (J). Siseenergia on süsteemi koguenergia

Keemia → Rakenduskeemia
83 allalaadimist
thumbnail
44
doc

Füüsikaline keemia

n — aine hulk Igasugune parameetrite muutus on termodünaamiline protsess ja nende muutus viib uue oleku tekkele. Olekufunktsioonid — suurused, mille väärtus on üheselt määratud ainult süsteemi olekuga ega sõltu sellest, millisel teel see olek saavutatud on. Neid ei saa eksperimentaalselt mõõta ega harilikult ka arvutada; arvutada saab nende muutust. U — siseenergia [kJ] H — entalpia [kJ] S — entroopia [J/kmol] G — Gibbsi vabaenergia [kJ/mol] W — töö [kJ] } pole olekufunktsioonid, sest nende väärtus sõltub viisist, mille q — soojus [kJ] } kaudu olek on saavutatud. Entalpia arvestab lisaks süsteemile ka teda ümbritsevat keskkonda. Gibbsi energia — energia, mille arvel süsteem teeb tööd Entroopia — korrapäratuse mõõt; entroopia absoluutväärtust saab arvutada. 2. termodünaamika I seadus. Soojusefektid: Isoleeritud süsteemi üldine energia on jääv suurus ega saa muutuda süsteemis kulgevate protsesside tagajärjel

Keemia → Füüsikaline keemia
43 allalaadimist
thumbnail
17
docx

Keemia eksami kordamisküsimused vastused

Lihtsamatel juhtudel on ligandeid ühe tsentraalaatomi ümber 4 või 6. Iga ligand annab tsentraalaatomiga vähemalt ühe kovalentse sideme. Kompleksis tsentraalaatomiga osteselt seotud ligandid moodustavad tsentraalaatomi koordinatsioonisfääri. Sidemete arv tsentraalaatomi ja ligandide vahel on kompleksi koordinatsiooniarv. Kompleksühendi värvus sõltub nii metallist kui ligandidest ja seetõttu kaasnevad vahetusreaktsioonidega sageli ka värvuse muutused.Termodünaamika 29. Iseloomustage olekufunktsioonid ja -parameetrid. OLEKUFUNKTSIOONID: Arvutavad suurused; süsteemi olekufunktsioonid ei sõltu oleku saavutamise viisist; tähistatakse suurte tähtedega (siseenergia U, entalpia H, entroopia S, Gibbsi energia G) OLEKUPARAMEETRID: Mõõdetavad suurused: temperatuur T, rõhk P, ruumala V, ainehulk n; omavaheline sõltuvus avaldub ideaalgaasi olekuvõrrandist (pV=m/M*RT (R - gaasi universaalkonstant)) 30. Termodünaamika I seadus.

Keemia → Rakenduskeemia
3 allalaadimist
thumbnail
6
doc

Keemia termodünaamika alused

Keemia termodünaamika alused 1. Ideaalse gaasi definitsioon. Ideaalse gaasi olekuvõrrand. Ideaalse gaasi olekufunktsioonid ­ p, T, V, U (siseenergia). Ideaalse gaasi kineetilise teooria alused ­ rõhu, temperatuuri ja siseenergia avaldised osakeste liikumisolekute kaudu. 1) Ideaalne gaas on reaalse gaasi lihtsaim mudel, kus lihtsuse mõttes oletatakse, et : · Molekulidel on lõpmata väikeste elastsete kerakeste omadused · Molekulide liikumine on kulgliikumine · Ideaalne gaas on lõpmatult kokkusurutav

Kategooriata → Üldloodusteadus
31 allalaadimist
thumbnail
12
doc

Rakenduslik süsteemiteooria - konspekt

Staatilised deterministlikud süsteemimudelid on süsteemid, mis ajas ei muutu. Staatilise süsteemimudeli sisendmuutujad, väljundmuutujad ja olekumuutujad on deterministlikud suurused või sündmused, mis ei muutu ajas. Süsteemi funktsioon on ajas muutumatu deterministlik funktsioon. Dünaamilised deterministlikud süsteemimudelid on ajas muutuvad süsteemid. Nende sisendid, väljundid ja olekumuutujateks on üldjuhul protsessid. Ka süsteemi sisend- väljund funktsioonid ja olekufunktsioonid võivad ajas muutuda. Protsessi minevikku nimetatakse realisatsiooniks ja tulevikku – prognoosiks. Informatsiooni protsessi mineviku kohta nimetatakse aposterioorseks ehk retrospektiivseks infoks ja tuleviku kohta ka aprioorseks infoks. Diskreetse ajaga protsesse nimetatakse ka aegridadeks. Determineeritud protsessiks nimetatakse sellist protsessi, mille tulevikku on võimalik täpselt ette prognoosida, kui on teada selle protsessi piisavalt pikk realisatsioon. See on

Energeetika → Energia ja keskkond
25 allalaadimist
thumbnail
34
pdf

Ettevalmistus kvantmehhaanika eksamiks

(on üldiselt rääkides võrdeline, erijuhul võrdne tõenäosusega), et olekus, mida kirjeldab (E ) , on mikroobjekti energia väärtuseks E0. Nagu näeme, ei ole tõenäosuse arvutamisel tähtusut teguril e i ( on reaalarv), mida nimetatakse fasikordajaks. Kui meid huvitavad ainult tõenäosuste suhted q eri väärtustel, võime olekufunktisooni korrutada veel mõnesuguse teguriga k (normeerimistegur), ilma et need suhted sellest muutuksid. Järelikult kirjeldavad olekufunktsioonid ja ' = ke i ühte ja sama olekut., st olekufunktsioon on määratud normeerimisteguri ja faasikordaja täpsuseni. 3. Vastavalt eelmises punktis kasutatud interpretatsioonile on integraal üle q määramispiirkonna . Kuivõrd osake eksisteerib, on alati võimalik leida mingisugust q väärtust (mis igas üksikkatses võib olla erinev). Seega peab olema N 2 0 . Niisiis: olekufunktsiooni norm peab nullist erinema.

Füüsika → Füüsika
9 allalaadimist
thumbnail
9
pdf

Termodünaamika alused

Keemia alused. Põhimõisted ja -seaduspärasused I. Termodünaamika alused 1. Termodünaamika põhimõisted Süsteem ­ vaadeldav universumi osa (liigitus: avatud, suletud, isoleeritud); faas ­ ühtlane süsteemi osa, mis on teistest osadest eralduspinnaga lahutatud ja erineb teistest osadest oma füüsikalis-keemiliste omaduste poolest; olekuparameetrid ­ iseloomustavad süsteemi termodünaamilist olekut: temperatuur (T), rõhk (p), ruumala (V), aine hulk (koostis) (n); olekuvõrrandid ­ olekuparameetrite vahelised seosed. Ideaalse gaasi olekuvõrrand (Clapeyroni-Mendelejevi võrrand): pV = nRT , R ­ gaasi universaalkonstant; R = 8.314 J/molK (ehk 0.0820 dm atm/molK); 3 R = poVo/To; po ­ normaalrõhk (1 atm. ehk 101 325 Pa), To ­ normaaltemperatuur (0 °C ehk 273.15 K), Vo ­ molaarruumala normaaltingimustel (22.4 dm3/mol). Olekufunktsioonid ­ funktsioo...

Keemia → Keemia alused
144 allalaadimist
thumbnail
18
pdf

Üldine keemia põhimoisted I

Keemia alused. Põhimõisted ja -seaduspärasused I. Termodünaamika alused 1. Termodünaamika põhimõisted Süsteem – vaadeldav universumi osa (liigitus: avatud, suletud, isoleeritud); faas – ühtlane süsteemi osa, mis on teistest osadest eralduspinnaga lahutatud ja erineb teistest osadest oma füüsikalis-keemiliste omaduste poolest; olekuparameetrid – iseloomustavad süsteemi termodünaamilist olekut: temperatuur (T), rõhk (p), ruumala (V), aine hulk (koostis) (n); olekuvõrrandid – olekuparameetrite vahelised seosed. Ideaalse gaasi olekuvõrrand (Clapeyroni-Mendelejevi võrrand): pV = nRT , R – gaasi universaalkonstant; R = 8.314 J/mol⋅K (ehk 0.0820 dm ⋅atm/mol⋅K); 3 R = poVo/To; po – normaalrõhk (1 atm. ehk 101 325 Pa), To – normaaltemperatuur (0 °C ehk 273.15 K), Vo – molaarruumala normaaltingimustel (22.4 dm3/mol). Olekufunktsioonid – funkt...

Keemia → Üldine keemia
9 allalaadimist
thumbnail
25
doc

Termodünaamika I eksamiküsimused vastustega

Polütroopne Gaasiga toimuva protsessi puhul pvn on konstantne 30. Ringprotsessi mõiste, ringprotsessi teostamise eesmärk. Ringprotsessid on need protsessid, milles süsteemi algolek taastub pärast seda kui süsteem on läbinud järjestikku mitu erinevat termodünaamilist vaheolekut. Ringprotsessi tähtis eesmärk on soojuse muundamine tööks, mis ongi tehnilise termodünaamika peamine eesmärk. 31. Oleku ja protsessifunktsiooni mõiste. · Olekufunktsioonid on funktsioonid, mis iseloomustavad süsteemi olekut, aga mis ei sõltu protsessi kulgemise teest. Protsessifunksioon sõltub, kuidas süsteem läheb algolekust lõppolekusse. 32. Absoluutse mehaanilise töö mõiste, graafiline kujutamine p-v diagrammil. Mehaaniline töö tehakse suletud süsteemi poolt teda väliskeskkonnast eraldavate pindade asendi muutuse tagajärjel. 33. Millal loetakse mehaanilist tööd positiivseks, millal negatiivseks

Füüsika → Termodünaamika
226 allalaadimist
thumbnail
11
pdf

Termodünaamika eksamiküsimused 2013

Polütroopne Gaasiga toimuva protsessi puhul pvn on konstantne 29. Ringprotsessi mõiste, ringprotsessi teostamise eesmärk. Ringprotsessid on need protsessid, milles süsteemi algolek taastub pärast seda kui süsteem on läbinud järjestikku mitu erinevat termodünaamilist vaheolekut. Ringprotsessi tähtis eesmärk on soojuse muundamine tööks, mis ongi tehnilise termodünaamika peamine eesmärk. 30. Oleku ja protsessifunktsiooni mõiste. Olekufunktsioonid on funktsioonid, mis iseloomustavad süsteemi olekut, aga mis ei sõltu protsessi kulgemise teest. 31. Absoluutse mehaanilise töö mõiste, graafiline kujutamine p-v diagrammil. Mehaaniline töö tehakse suletud süsteemi poolt teda väliskeskkonnast eraldavate pindade asendi muutuse tagajärjel. 32. Millal loetakse mehaanilist tööd positiivseks, millal negatiivseks Mehaaniline töö loetakse positiivseks, kui see tehakse termodüinaamilise keha paisumisel

Mehaanika → Masinamehaanika
30 allalaadimist
thumbnail
13
docx

Üldloodusteadus

28) Keemilisele tasakaalule vastab olukord, kus päri- ja vasatassuunalise reaktsiooni kiirused on võrdsed. Tasakaalu konstant on pari- ja pöördsuunalise reaktsiooni kiiruskonstantide jagatis: Keemia termodünaamika alused. 29) Ideaalse gaasi definitsioon: ideaalne gaas on kõige lihtsam termodünaamiline süsteem; see on gaas, mis koosneb täielikult elastsetest punktmassidest. Ideaalse gaasi olekuvõrrand: pV/T=nR. Ideaalse gaasi olekufunktsioonid ­ p, T, V, U. T-temperatuur; V-ruumala; U- siseenergia; p-rõhk. Termodünaamiliseks süsteemiks nimetatakse reaalse või kujuteldava piiripinnaga piiritlerud füüsikalist keha või kehade süsteemi, mis on termodünaamilise käsitluse aineks. 30) Ideaalse gaasi olekuvõrrand: pV/T=nR Isobaariline protsess on isoprotsess, mis toimub jääval rõhul; sellisel protsessil p on konstantne, sellepärast võrrand on: V1/V2=T1/T2.

Loodus → Loodusteadus
2 allalaadimist
thumbnail
38
docx

Füüsikaline keemia

Termodünaamika seadused ja alused 1. Kas tegu on avatud, suletud või isoleeritud süsteemiga: a) kohv väga hea kvaliteediga termoses; -isoleeritud b) jahutusvedelik külmkapi jahustussüsteemis; -suletud c) pommkalorimeeter, milles põletatakse benseeni; - isoleeritud d) automootoris põlev bensiin; - suletud e) elavhõbe termomeetris; - isoleeritud f) taim – avatud 2. Kirjelda kolme viisi, kuidas saab tõsta siseenergiat avatud süsteemis! Millisega neist meetoditest saab tõsta siseenergiat suletud süsteemis? Kas mõni neist meetoditest kõlbab ka isoleeritud süsteemi energia tõstmiseks? – avatud - toimub nii energia- kui ka ainevahetus ümbritseva keskkonnaga – suletud - puudub ainevahetus ümbrusega, aga võib toimuda energiaülekanne kas töö (mehaaniline toime) või soojusena (termiline toime). – isoleeritud - puudub nii energia- kui ka ainevahetus. Väliskeskkonnaga pole ei mehhaanilist ega soojuslikku kontakti. Siseenergiat avatud süsteemis...

Keemia → Füüsikaline keemia
105 allalaadimist
thumbnail
23
doc

Füüsikaline- ja kolloidkeemia

Füüsikaline keemia Füüsikaliseks keemiaks nimetatakse teadusharu, mille uurimisobjektiks on aine ehitus ja keemiliste protsesside kulgemise üldised füüsikalised seaduspärasused. (adsorptsioon, aurustumine, sulamine, difusioon, elektrolüüs jne) Termodünaamika Termodünaamika uurib ainult makrosüsteeme, mitte üksikuid molekule või nende osi. Termodünaamika on teadus energia muundumistest. Termodünaamiline süsteem ­ süsteem, mida saab ümbritsevast keskkonnast eraldada ja eksperimentalselt uurida. Termodünaamika ajalugu Õpetus termiliste protsesside soojusefektidest ja tööst. Klassikaline termodünaamika tekkis 19.sajandi keskel. Tänapäeval uurimisobjekt: erinevate energiavormide vastastikused üleminekud mitmesugustes füüsikaliste ja keemilistes protsessides. Süsteemid ja ümbritsev keskkond Süsteemide jaotus teda väliskeskkonnaga siduvate protsesside järgi: ­ avatud - toimub nii energia- kui ka ainevahetus ümbritseva keskkonnaga ­ suletud - p...

Keemia → Füüsikaline ja kolloidkeemia
50 allalaadimist
thumbnail
70
pdf

Rakenduskeemia kordamisküsimused

sideme. Kompleksis tsentraalaatomiga osteselt seotud ligandid moodustavad tsentraalaatomi koordinatsioonisfääri. Sidemete arv tsentraalaatomi ja ligandide vahel on kompleksi koordinatsiooniarv. N: kaaliumheksatsüanoferraat(III) K3[Fe(CN)6], milles tsentraalioon: Fe3+, ligandid: CN-(6 tk), välisfäär: K+ (3 tk) Kompleksühendi värvus sõltub nii metallist kui ligandidest ja seetõttu kaasnevad vahetusreaktsioonidega sageli ka värvuse muutused. TERMODÜNAAMIKA 29. Iseloomustage olekufunktsioonid ja parameetrid. OLEKUPARAMEETRID  temperatuur (T) (mõõdetavad suurused)  rõhk (P)  ruumala (V)  ainehulk (n) OLEKUFUNKTSIOONID Siseenergia (U) - Süsteemi summaarset võimet teha tööd nimetatakse (arvutatavad suurused) tema siseenergiaks U. Siseenergia on süsteemi koguenergia. Sõltub ainult

Keemia → Rakenduskeemia
46 allalaadimist
thumbnail
54
docx

Keemia aluste eksam I semester

KEEMIA ALUSTE EKSAM 2017 PÕHIALUSED Mõisted Mateeria – filosoofia põhimõiste: kõik, mis meid ümbritseb. Jaguneb aineks ja väljaks Aine – kõik, millel on mass ja mis võtab ruumi Mõõtmine – mõõdetava suuruse võrdlemine etaloniga (mõõtühikuga) Jõud (F) – mõju, mis muudab objekti liikumist. Newtoni teine seadus: F=m*a (mass*kiirendus). Tuum – asub aatomi keskel, koosneb prootonitest ja neutronitest Elektronpilv – ümbritseb tuuma, koosneb elektronidest Energia – keha võime teha tööd, toimida välise jõu vastu. Mõõdetakse džaulides (J). Kineetiline, potentsiaalne ja elektromagnetiline energia. Välise mõju puudumisel on süsteemi koguenergia jääv (energia jäävuse seadus). Prootonite arv tuumas on aatomi järjenumber e aatomnumber. Neutronite arv tuumas võib sama elemeni eri aatomites erineda. Prootonite ja neutronite koguarv tuumas on massiarv. Isotoobid - sama järjenumbri, kuid erineva massiarvuga aatomid Aatomid ...

Keemia → Keemia
40 allalaadimist
thumbnail
15
pdf

Keskkonnakeemia

protsessis. Keemiline termodünaamika (t-d) vaatleb protsesse nende võimalikkuse, kulgemise suuna ja lõpptulemuste seisukohalt uurib süsteeme,uurib üldomadusi, laskumata süsteemi sisemise ehituse üksikasjadesse. Reaktsiooni keskkond kui süsteem on kas a) avatud, b) suletud või c) isoleeritud vastavalt energia või/ja massi vahetuse olemasolule ümbritseva keskkonnaga. Kõigis neis süsteemides võib muutuda rõhk(p), ruumala(V) ja temperatuur(T). Olekuparameetrid (OP) ja olekufunktsioonid (OF) OP on tavaliselt mõõdetavad suurused: temperatuur T, rõhk P, ruumala V, ainehulk n OF on funktsioon, mis sõltub ainult süsteemi olekust, olekuparameetritest, mitte aga selle oleku saavutamise teedest (Hessi seadus - reaktsiooni soojusefekt ei sõltu reaktsiooni teest) Redoksreaktsioon- keemiline reaktsioon, mille juures elektronid lähevad üle redutseerijalt oksüdeerijale ning esimese oksüdatsiooniaste suureneb, teise oma samal ajal väheneb (elektronide üleminek ühelt aatomilt

Keemia → Keskkonnakeemia
145 allalaadimist
thumbnail
6
doc

Üldloodusteaduse kordamisküsimused-vastused

1.Mis on aine? Aine on aatomite kogum, mis on pidevas soojusliikumises; ainel on agregaatolek ning füüsikalis-keemilised omadused. Aine all mõistetakse füüsikas tavaliselt stabiilseid seisumassiga elementaarosakesi (tavaliselt prootoneid, neutroneid ja elektrone) ning nende kombinatsioone. Selliselt mõistetuna vastandatakse ainet väljale. 2.Kuidas tõestada, et ained koosnevad osakestest? Erinevate katsete tegemisel, ntks. lõhna/värvi levimisel (difusioon - nähtus, kus ained segunevad üksteisega. Sama moodi on difusioon ühe ja sama aine molekulide tungimine teise aine molekulide vahele; difusioon on soojus liikumisest tingitud protsess, mis viib kontsentratsiooni ühtlustumiseni ruumis). 3.Kuidas tõestada, et aatomid ja moleklulid on pidevas soojusliikumises? Reaktsioonide toimumise tõttu. Aineosakesed on pidevas soojusliikumises, selle kiirust mõõdame me kaudselt termomeetriga. Kui jahutada kehasid siis aineosakeste soojusliikumine aeglu...

Kategooriata → Üldloodusteadus
173 allalaadimist
thumbnail
990
pdf

Maailmataju ehk maailmapilt 2015

Ψ = c1 ψ1(1) + c2 ψ1(2) . Kui aga ψ1(1) ja ψ1(2) ei ole ortogonaalsed, siis saab neist moodustada 2 lineaarset kombinatsiooni, mis on omavahel ortogonaalsed: Ĺ Ψ = c1 Ĺ ψ1(1) + c2 Ĺ ψ1(2) = c1 λ1 ψ1(1) + c2 λ1 ψ1(2) = λ1 Ψ. Koefitsentide c1 ja c2 mooduli ruudud annavad vastavate olekute esinemise tõenäosused. Seda nimetatakse superpositsiooniprintsiibiks. Superpositsiooniprintsiibi korral liituvad osakeste olekufunktsioonid, mitte tõenäosused. Kvantmehaanika sellist teleportmehaanilist formalismi ( kvantmehaanika on tegelikult teleportmehaanika ) on võimalik katseliselt ka tõestada. See seisneb järgnevas. Eksperimentaalsel ajas rändamisel pannakse inimene ruumis teleportreeruma ( inimest teleportreeruda ajas ja ruumis korraga ei saa ). See tähendab seda, et inimene teleportreerub ruumipunktist A ruumipunkti B. Ruumipunktide A ja B vahel võib eksisteerida mingi suvaline tõke – näiteks betoonsein

Psühholoogia → Üldpsühholoogia
113 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun