Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

MATEMAATILINE ANALÜÜS I - sarnased materjalid

piirväärtus, teoreemtegraal, tuletis, tähistus, geomeetriline, muutuja, definitsioonid, katkevus, algfunktsioon, diferentsiaal, kumer, nõgustegraalid, graafik, piirväärtused, teoreemid, piltlik, pöördfunktsioon, võnkumine, rangelt, pidevuse, käänupunkt, matemaatika, määramis, graafiline, tehted, pidevate, tuletiste, kumerus, nõgusus
thumbnail
24
pdf

MATEMAATILINE ANALÜÜS I. KORDAMISKÜSIMUSED

• Argumentide x hulka X nimetatakse määramispiirkonnaks. • Suuruse y muutumispiirkonda Y nimetatakse muutumispiirkonnaks. Funktsioon on antud, kui on teada: a) F-ni määramispiirkond X b) Eeskiri, mis seab argumendi x igale väärtusele piirkonnas X vastavusse funktsiooni y väärtuse. 3. Ilmutamata ja ilmutatud kujul funktsioon. Näited. Ilmutatud funktsiooniks nimetatakse niisugust funktsiooni, kus funktsiooni esitava võrduse vasakul pool on ainult sõltuv muutuja y ja paremal pool muutujast x sõltuv avaldis. Ilmutamata funktsiooniks nimetatakse niisugust funktsiooni, mille väärtused leitakse x ja y siduvast võrrandist (üldjuhul f(x; y) = 0). N: ilmutatud f-nid: y = 2x+1, ilmutamata kujul: x2 + y2 = 1 4. Funktsiooni graafik (definitsioon, piltlik esitus). Funktsiooni y = f(x) graafikuks nimetatakse kõigi niisuguste punktide (x, f(x)) hulka, kus x ∈ X. Lühidalt, Funktsiooni graafik = { (X, f(x)) : x ∈ X } 5

Matemaatiline analüüs 1
26 allalaadimist
thumbnail
14
docx

Matemaatiline analüüs I eksami kordamisküsimused vastused

Matemaatiline analüüs I Eksamiteemad 1. Muutuvad suurused: Muutuja x on argument ehk sõltumatu muutuja. Muutuja y on sõltuv muutuja. 2. Funktsioon- Muutuvat suurust y nimetatakse muutuva suuruse x funktsiooniks, kui mingi eeskirjaga on suuruse x igale väärtusele seatud vastavusse suuruse y üks väärtus Tähistused: y=f(x); y=g(x); y=H(x) Näited: s(t)=3-0,5gt²( s- kaugus maapinnast langemisel; g- raskuskiirendus) Funktsiooni esitlusviis: a. Piltlik- d. Nooldiagrammine- b

Matemaatiline analüüs 1
75 allalaadimist
thumbnail
32
doc

Matemaatika I küsimused ja mõisted vastustega

ühepoolsed piirväärtused f ( a+) = lim f(x); x a+ ja f( a- ) = lim f(x); x a - nimetatakse 1. liiki katkevuspunktiks. ( hüppekoht, kõrvaldatav katkevuskoht, ................................................... 3 17. Teist liiki katkevuspunkt - arvu a nimetatakse funktsiooni y = f(x) teist liiki katkevuspunktiks, kui lim f(x); x a - on lõpmatu või ei eksisteeri ............................................ 4 20. Diferentseeruv funktsioon - kui funktsioonil y = f(x) on tuletis punktis x = x0, siis ütleme, et funktsioon on diferentseeruv punktis x0. Kui funktsioon on aga diferentseeruv mingi piirkonna igas punktis, öeldakse, et funktsioon on diferentseeruv selles piirkonnas. ..................................... 4 1. Arvuhulgad: naturaal-, täis-, ratsionaal-, reaal- ja kompleksarvud. Nende omadused. ...............6 2. Reaalarvu absoluutväärtus, absoluutväärtuse omadused. ............................................................6 Absoluutväärtuse omadused..

Matemaatika
118 allalaadimist
thumbnail
26
doc

Matemaatiline analüüs I - kordamine eksamiks

funktsiooni f muutumispiirkonnaks. Funktsiooni f graafikuks nimetatkse xy-tasandi punktide hulka ( f ) = {( x, y ) : y = f ( x), x X }. Funktsioon on defineeritud, kui on antud tema määramispiirkond ning eeskiri, mis seab igale määramispiirkonna punktile vastavusse ühe reaalarvu. Funktsiooni põhilised esitusviisid on järgmised: 1. analüütiline esitus valemi(te) abil, 2. numbriline esitus tabeli abil, 3. geomeetriline esitus graafiku abil. Märkus. Kui funktsiooni y = f(x) korral on antud vaid teda määrav eeskiri,mää- ramispiirkond X pole aga fikseeritud, siis loetakse määramispiirkonnaks nende argumendi väärtuste x hulk, mille korral funktsiooni määrav eeskiri omab mõtet (nn loomulik määramispiirkond). Näiteks on funktsiooni y = x -4 määramispiirkond X = [4,). Elementaarfunktsioonid. Matemaatilises analüüsis enim uuritud ja kõige sagedamini esinevad funktsioonid on elementaarfunktsioonid

Matemaatiline analüüs i
687 allalaadimist
thumbnail
39
pdf

Matemaatiline analüüs I konspekt -Tõkestatud hulgad

hulga X punkte kui ka neid punkte, mis ei kuulu hulka X . Sisepunkt ei saa olla rajapunkt. Sisepunkt on alati kuhjumispunkt. Rajapunkt võib olla kuhjumispunkt. 1 Kordamine matemaatilise analüüsi I eksamiks matemaatika-informaatika teaduskonnas 04/05 õ.a Funktsioon, tema graafik Olgu X mingi reaalarvude hulk. Kui x tähendab mis tahes arvu hulgast X , siis öeldakse, et x on muutuv suurus ehk muutuja hulgas X . Iga arvu x X nimetatakse muutuja x väärtuseks. Definitsioon: Kui igale arvule x X on mingi eeskirja f abil seatud vastavusse üks reaalarv y , siis öeldakse, et hulgas X on määratud funktsioon y = f ( x ) ja kirjutatakse: y = f ( x ) , x X . Muutujat x nimetatakse funktsiooni argumendiks ehk sõltumatuks muutujaks ja muutujat y tema sõltuvaks muutujaks. Hulka X nimetatakse funktsiooni määramispiirkonnaks ja hulka

Matemaatiline analüüs I
73 allalaadimist
thumbnail
22
doc

Matemaatiline analüüs I - kordamine eksamiks (ainekava järgi koostatud konspekt)

Ratsionaalarvud ­ on sellised reaalarvud, mida saab esitada kahe täisarvu m ja n jagatisena nii et n n 0 . Igal ratsionaalarvul on ka lõpmatu kümnendmurdarendus ja see on alati perioodiline, tähistatakse Q Irratsionaalarvud ­ mitteperioodilised lõpmatud kümnendmurrud. Tähistus I Reaalarvud ­ hulk R, koosneb kõikidest ratsionaal- ja irratsionaalarvudest 2. Tähtsamad reaalarvude hulgad (lõik, vahemik, poollõik). Hulga X R ülemine ja alumine raja. Olgu X mingi reaalarvude hulk (X R). Hulka X nimetatakse ülalt tõkestatud hulgaks, kui leidub selline arv M, nii et x M iga x X korral. Seejuures arvu M nimetatakse hulga X ülemiseks tõkkeks.

Matemaatiline analüüs i
776 allalaadimist
thumbnail
2
pdf

Matemaailine analüüs I kollokvium III spikker

Kuna g(x) = O(1) (x[a,b]) F'(x) = (x)= f(x). Definitsioon (määramata integraal) Avaldist kujul F(x) + C; kus ja g(x)f(x) vaid punktis c ning () [, ] () = (1)( [, ]), siis F(x) on funktsiooni f (x) mingi algfunktsioon ja C on suvaline konstant () = =1 ( )+ (g( ) - f( )) = S(f) + (( ) - f( )) , kus (integreerimiskonstant), nimetatakse funktsiooni f (x) määramata integraaliks ja 0

Matemaatika analüüs I
139 allalaadimist
thumbnail
156
pdf

Kõrgem matemaatika

. . . . . . . . . . . . . . . . 29 3.5 Põhilised elementaarfunktsioonid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 SISUKORD 3.6 Elementaarfunktsioonid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.7 Jadad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4 Funktsiooni piirväärtus ja pidevus 37 4.1 Jada piirväärtus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.2 Funktsiooni piirväärtuse mõiste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.3 Ühepoolsed piirväärtused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.4 Funktsiooni piirväärtuse omadused . . . . . . . . .

Kõrgem matemaatika
94 allalaadimist
thumbnail
37
docx

Matemaatiline analüüs l.

Trigonometriliste funktsioonide määramispiirkonnad ja väärtuste hulgad: y = sin x : X = R, Y = [-1, 1] , y = cos x : X = R, Y = [-1, 1] , y = tan x : X = R {(2k + 1)/2 * || k Z},Y = R, y = cot x : X = R {k || k Z}, Y = R. Graafikud. Funktsioonid y = sin x ja y = cos x on perioodilised perioodiga 2 ning y = tan x ja y = cot x perioodiga . Funktsioonid y = sin x, y = tan x ja y = cot x on paaritud ning y = cos x paaris. 4. Üksühese funktsiooni ja pöördfunktsiooni definitsioonid. Seosed funktsiooni ja tema pöördfunktsiooni määramispiirkondade ja väärtuste hulkade vahel, vastastikune kompenseerimine, funktsiooni ja pöördfunktsiooni graafikute omavaheline seos. Logaritmfunktsioon ja tema määramispiirkond, väärtuste hulk ning graafik. Arkusfunktsioonid ja nende seosed trigonomeetriliste funktsioonide ahenditega. Arkusfunktsioonide määramispiirkonnad, väärtuste hulgad ja graafikud. Üksühese funktsiooni mõiste. Olgu antud funktsioon y = f(x)

Matemaatiline analüüs
484 allalaadimist
thumbnail
16
docx

J. Kurvitsa teooria vastused

esitatakse see järgmiselt: x = x (t ) t T y = x(t ) x = t +1 Näiteks: y = t + 2 Polaarkoordinaadid, üleminek parameetrilisele esitusele. Funktsiooni f saab esitada ka polaarkoordinaatides valemiga r = r(), T, mis annab funktsiooni graafiku punktid (x,y) polaarkoordinaatides (r, ). Esituselt polaarkoordinaatides saab minna üle parameetrilisele esitusele kasutades järgmiseid valemeid: Näiteks: 8. Jada (näide). Jada piirväärtus. Näiteks tõestada, et jada xn= piirväärtus on . Alates millisest n väärtusest suurus - xn ei ületa = 0,01 ? Jada. Definitsioon nimetatakse funktsiooni, mille määramispiirkonnaks on naturaalarvude hulk N. Näide: n = (1, , , ...) Jada piirväärtus. Arvu a nimetatakse reaalarvude jada x1, x2, x3, ... piirväärtuseks, kui iga kuitahes vaikese positiivse arvu korral saab näidata sellist jada elementi xn , millest alates

Matemaatiline analüüs
195 allalaadimist
thumbnail
6
docx

Matemaatilise analüüsi eksamiks valmistumine

Kordamisküsimused 1. Funktsioon - Olgu X mingi reaalarvude hulk. Kui muutuja x igale väärtusele hulgas X vastab muutuja y üks kindel väärtus, siis öeldakse, et y on muutuja x funktsioon. Funktsiooni esitusviis: tabelina, graafikuna. Funktsiooni analüütiline esitusviis on ilmutatud, ilmutamata, parameerilisel kujul. 2. Funktsioonide liigitus (paaris- ja paaritud funktsioonid, perioodilised funktsioonid, monotoonsed funktsioonid, tõkestatud funktsioonid). Tuua näiteid. paarisfunktsioon - Funktsiooni y = f (x) nimetatakse paarisfunktsiooniks, kui f (-x) = f (x) Paarisfunktsiooni graafik on sümmeetriline y-telje suhtes

Matemaatiline analüüs
136 allalaadimist
thumbnail
21
docx

Matemaatiline analüüs 1, teine teooriatöö kordamisküsimused

23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana y ' =f ( a ) +r ( x ) x Korrutame saadud avaldise x-ga ja saame y=f ' ( a ) x+ , kus =r ( x ) x Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (Tõestada) ' lim f ( a ) x dy lim r ( x ) x =¿ x o = lim f ' ( a )=f ' ( a ) 0 x x x o lim = x o = lim r ( x ) =0 lim ¿ x o x x x o x o

Matemaatika
10 allalaadimist
thumbnail
12
docx

Matemaatiline analüüs I 3. kollokviumi spikker

Küsimused: 1.Määratud integraali (Riemanni mõttes) definitsioon. Darbouc ülem- ja alamsummad. Riemanni summa ja Darboux’ summade seos-viimane pilt. ∫ f ( x ) dx st ∫ f ( x ) dx=F ( x ) +C . Määramata integraali tuletis on f (¿ ξi) ∆ xi SΠn n võrdne integreeritava funktsiooniga st ( ∫ f ( x ) dx )’= f(x). Tõestus: ( ∫ f ( x ) dx Riemanni summa lõigul [a,b] (f) =

Matemaatiline analüüs 1
24 allalaadimist
thumbnail
32
pdf

Matemaatiline analüüs II konspekt - MITME MUUTUJA FUNKTSIOONID

Kordamine eksamiks aines matemaatiline analüüs II (2004/2005 õa kevad) §1. MITME MUUTUJA FUNKTSIOONID 1. Ruum R m , hulgad selles ruumis Def. Kõigi m reaalarvust koosnevate järjestatud süsteemide P = ( x1 ,..., x m ) hulka nimetatakse m-mõõtmeliseks ruumiks. Def. Kui m-mõõtmelises ruumis defineeritakse süsteemide P = ( x1 ,..., x m ) ja Q = ( y1 ,..., y m ) m vaheline kaugus d (P, Q ) valemiga d (P, Q ) = (x - y i ) , siis nimetatakse seda ruumi

Matemaatiline analüüs II
187 allalaadimist
thumbnail
4
doc

Matemaatiline analüüs - teooria spikker

27. Trigonomeetriliste avaldiste integreerimine. 28. Määratud integraal ja selle omadused. 1. Funktsioon. Määramispiirkond, väärtuste hulk. Me vaatleme integraali (sinx,cosx)dx Keskväärtusteoreem (tõestusega). Pöördfunktsioon. 1. Universaalne asendus tan x/2=t Olgu y=f(x) pidev lõigul [a,b] Jaotame lõigu n osaks punktidega 2. Funktsiooni piirväärtus. Teoreemid piirväärtuste x0=a, x1, x2,..,xn=b kohta (tõestusega). J={x0,x1,..,xn} lõigu [a,b] jaotus 3. Lõpmatult vähenevad suurused ja nende järk. Igal lõigukesel xi=xi-xi-1 i=1,2,..,n võtame punkti i =[xi-1,xi] 4

Matemaatiline analüüs
973 allalaadimist
thumbnail
5
docx

Teine osaeksam, matemaatiline analüüs I, teooriaküsimused

Matemaatilise analüüsi (I) II osaeksami teooriaküsimused (Tallinnas õppivatele kaugõppijatele) 1. Funktsiooni muudu peaosa ja funktsiooni diferentsiaal. Sõltumatu muutuja diferentsiaal. Funktsiooni diferentsiaali valem. Ligikaudse arvutamise valem. Funktsiooni muut y koosneb kahest liidetavast, millest esimene [kui f ( x ) 0 ] on muudu niinimetatud peaosa, mis on võrdeline argumendi muuduga x . Korrutist f ( x ) x nimetatakse funktsiooni diferentsiaaliks ja tähistatakse sümboliga dy või df ( x ) . Sõltumatu muutuja x diferentsiaal dx ühtib tema muuduga x . dy

Matemaatika analüüs I
147 allalaadimist
thumbnail
5
doc

Matemaatilise analüüsi 2.kollokviumi

Mitmemuutuja funktsiooni mõiste. Mitmemuutuja funktsiooni piirväärtuse definitsioon. Pideva mitmemuutuja Kui funktsiooni z=f(x,y) on diferentseeruv kohal (x,y), siis funktsioon f on pidev sellel kohal. funktsiooni definitsioon. Kahemuutuja funktsiooni pidevuse geomeetriline sisu. Funktsioon z=f(x,y) on diferentseeruv kohal (x,y) siis, kui funktsioonil z=f(x,y) on pidevad osatuletised fx ja fy kohal (x,y). Kui hulga Rn igale punktile P(x1, . . . , xn) on vastavusse seatud muutuja u R kindel väärtus, siis öeldakse, et hulgal on Kui funktsiooni f(x,y) osatuletised fx(x,y) ja fy(x,y) on diferentseeruvad kohal (x,y), siis fxy = fyx kohal (x,y).

Matemaatiline analüüs 2
37 allalaadimist
thumbnail
10
doc

Matemaatiline analüüs I konspekt - funktsioon

"Matemaatiline analüüs I" Funktsioon Funktsioon- Kui muutja x igale väärtusele piirkonnas X vastab muutuja y kindel väärtus, siis öeldakse, et y on muutuja x funktsioon piirkonnas X. Sõltumatu muutuja on x, sõltuv y Funktsiooni määramispiirkond-Funktsiooni y määramispiirkonnaks nimetakse argumendi x muutumispiirkonda. Funktsioonide liigid- 1. Paaris funktsioon-rahuldab tingimust f(x)=f(-x) ja see on sümmeetriline y-telje suhtes. (Nt:y=x2) 2.Paaritu funktsioon-rahuldab tingimust f(-x)=-f(x) ja see on sümmetrialine 0 punkti suhtes. (y=sinx) 3.Perioodilised funktsioonid- rahuldab tingimust f(x+T)=f(x), T on periood. 4

Matemaatiline analüüs
259 allalaadimist
thumbnail
18
docx

Matemaatiline analüüs KT2 vastused

23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. Funktsiooni muudu peaosa ja jääkliige. Olgu antud funktsioon, mis on diferentseeruv punktis a. Eeldame, et f(a)0 kasutades mõisteid: x = x - a - argumendi muut kohal a y = f(x) - f(a) - funktsiooni muut kohal a . Näitasime, et Seega kui tähistame ja f'(a) vahe järgmiselt : Kehtib võrdus Püüame avaldada funktsiooni muutu y argumendi muudu x kaudu. Selleks

Matemaatiline analüüs I
121 allalaadimist
thumbnail
14
doc

Kollokvium III

1. Algfunktsiooni definitsioon. Määramata integraali definitsioon. Määramata integraal kui tuletise ja diferentsiaali pöördoperaator. Funktsiooni f algfunktsiooniks nimetatakse funktsiooni F, mis rahuldab tingimust F'(x) = (x)= f(x). Definitsioon (määramata integraal) Avaldist kujul F(x) + C; kus F(x) on funktsiooni f (x) mingi algfunktsioon ja C on suvaline konstant (integreerimiskonstant), nimetatakse funktsiooni f (x) määramata integraaliks ja tähistatakse st . Määramata integraali tuletis on võrdne integreeritava funktsiooniga st ( )'= f(x). Tõestus: ( )'= (F(x)+C)'=F'(x)= f(x). d( )= ( )'dx = f(x)dx = F'(x)dx= dF(x). Operaatorit L:V->W nimetame lineaarseks kui on täidetud tingimused:

Matemaatiline analüüs
107 allalaadimist
thumbnail
51
pdf

Enno Paisu konspekt

3) logaA(x) A(x) >0 arcsin A( x) 4) -1 A( x) 1 arccos A( x) Funktsiooni y=f(x) pöördfunktsiooniks nim. f-ni y=g(x), mis igale funktsiooni f väärtusele y seab vastavusse need argumendi x väärtused, mille korral y=f(x) Olgu funktsioonid y=f(x) ja y=g(x), siis väärtus y on teisendatud argumendi x liitfunktsiooniks ehk kompositsiooniks y=f[g(x)]=f*g(x) © 2001 - Ivari Horm ([email protected]), Toomas Sarv 1 Funktsiooni piirväärtus. Teoreemid piirväärtuste kohta (tõestusega). Arv a on funktsiooni y=f(x) piirväärtuseks tingimusel, et xx0, kui >0, () >0, et 0< x-x0< f(x)-a< Selleks, et funktsioonil y = f (x) oleks piirväärtus, kui xx0 on piisav ja tarvilik, et eksisteeriksid ühepoolsed piirväärtused ja et nad oleks võrdsed. lim f ( x) = lim f ( x) = a x x0 - 0 x x0 + 0 Teoreemid piirväärtuste kohta. Teoreem 1 Selleks, et funktsioonil oleks piirväärtus on piisav ja tarvilik, et

Matemaatiline analüüs
179 allalaadimist
thumbnail
51
pdf

Matemaatilise analüüsi konspekt

3) logaA(x) A(x) >0 arcsin A( x) 4) -1 A( x) 1 arccos A( x) Funktsiooni y=f(x) pöördfunktsiooniks nim. f-ni y=g(x), mis igale funktsiooni f väärtusele y seab vastavusse need argumendi x väärtused, mille korral y=f(x) Olgu funktsioonid y=f(x) ja y=g(x), siis väärtus y on teisendatud argumendi x liitfunktsiooniks ehk kompositsiooniks y=f[g(x)]=f*g(x) © 2001 - Ivari Horm ([email protected]), Toomas Sarv 1 Funktsiooni piirväärtus. Teoreemid piirväärtuste kohta (tõestusega). Arv a on funktsiooni y=f(x) piirväärtuseks tingimusel, et xx0, kui >0, () >0, et 0< x-x0< f(x)-a< Selleks, et funktsioonil y = f (x) oleks piirväärtus, kui xx0 on piisav ja tarvilik, et eksisteeriksid ühepoolsed piirväärtused ja et nad oleks võrdsed. lim f ( x) = lim f ( x) = a x x0 - 0 x x0 + 0 Teoreemid piirväärtuste kohta. Teoreem 1 Selleks, et funktsioonil oleks piirväärtus on piisav ja tarvilik, et

Matemaatiline analüüs
11 allalaadimist
thumbnail
8
docx

Matemaatiline analüüs KT2

20. Esitada funktsiooni muut diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? Tõestada ei ole vaja. Funktsiooni muudu peaosa ja jääkliige. Olgu antud funktsioon, mis on diferentseeruv punktis a. Eeldame, et f (a)0. Valemist näeme, et funktsiooni muut y koosneb kahest liidetavast, millest esimene on diferentsiaal dy = f(a)x ja teine on . Mõlemad liidetavad on lõpmatult kahanevad protsessis x 0. Näeme, et esimene liidetav, so diferentsiaal dy on sama järku lõpmatult kahanev suurus kui x ja teine liidetav on kõrgemat järku lõpmatult kahanev suurus x suhtes. Järelikult väikese x korral hakkab diferentsiaal funktsiooni muudu avaldises domineerima. Seetõttu võime lugeda diferentsiaali dy funktsiooni muudu peaosaks. Jääkliikme võib väikese x korral funktsiooni muudu avaldises ära jätta

Matemaatiline analüüs
231 allalaadimist
thumbnail
36
pdf

Matemaatiline analüüs

Matemaatiline analüüs 23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu ∆x suhtes, kui ∆x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. Funktsiooni muudu esitus: ∆y = f’(a)∆x + β , kus β = r(∆x)∆x Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu ∆ x suhtes, kui ∆ x läheneb nullile? (tõestada!). funktsiooni muut ∆y koosneb kahest liidetavast, millest esimene on diferentsiaal dy = f’(a)∆x ja teine on β. Mõlemad liidetavad on lõpmatult kahanevad protsessis ∆x → 0. Võrdleme neid suurusi ∆x suhtes. Esiteks, eelduse f’(a)  0 põhjal saame lim dy ∆x= lim f’(a)/∆x* ∆x= lim f’(a) = f(a)  0. ∆x→0 ∆x→0 ∆x→0 Teiseks kehtib

Matemaatiline analüüs 1
14 allalaadimist
thumbnail
19
doc

Nimetu

1 ÜHE MUUTUJA FUNKTSIOON. TEMA MÄÄRAMISPIIRKOND DEFINITSIOON 1. Kui muutuja x igale väärtusele hulgast X on mingi eeskirja f abil vastavusse seatud lõplik reaalarv y, siis öeldakse, et hulgal X on määratud FUNKTSIOON ja seda tähistatakse y = f(x). DEFINITSIOON 2. Muutuja x väärtuste hulka, mille puhul f(x) väärtus on lõplik, nimetatakse funktsiooni y = f(x) MÄÄRAMISPIIRKONNAKS. X = { x R; f(x) väärtus on lõplik}. PÕHILISED ELEMENTAARFUNKTSIOONID: 1. Astmefunktsioonid: y = x , Q; 2. Eksponentfunktsioonid: y = ax, a > 0, a 1; 3. Logaritmfunktsioonid: y = loga x, a > 0, a 1; 4. Trigonomeetrilised funktsioonid: y = sin x, y = cos x, y = tan x, y = cot x; 5. Arkusfunktsioonid: y = arcsin x, y = arccos x,

177 allalaadimist
thumbnail
16
docx

Matemaatiline analüüs 2 KT

KT 2, MAT. ANALÜÜS 18. Esitada funktsiooni muut diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu ∆x suhtes, kui ∆x läheneb nullile? Tõestada ei ole vaja.  ∆y = f’(a)∆x + β  Diferentsiaal ja jääkliige on lõpmatult kahanevad protsessis ∆x → 0. 19. Funktsiooni lokaalsete ekstreemumite definitsioonid. Sõnastada Fermat’ lemma (tõestust ei küsi). Öeldakse, et funktsioonil f on punktis x1 lokaalne maksimum, kui 1. funktsioon f on määratud punkti x1 mingis ümbruses (x1 − ɛ, x1 + ɛ); 2. iga x ∈ (x1 − ɛ, x1 + ɛ) korral kehtib võrratus f(x) ≤ f(x1). Öeldakse, et funktsioonil f on punktis x1 lokaalne miinimum, kui 1. funktsioon f on määratud punkti x1 mingis ümbruses (x1 − ɛ, x1 +

Matemaatika
14 allalaadimist
thumbnail
82
docx

Matemaatiline analüüs I kordamine eksamiks

(Q1) suvaliste a,b,c € R puhul kehtib parajasti üks tingimustest a = b, a < b, b < a (trihhotoomia reegel) (Q2) kui a < b ja b < c, siis a < c (transitiivsus) (Q3) kui a < b, siis a + c < b + c (liitmise monotoonsus) (Q4) kui a < b ja c > 0, siis ac < bc (korrutamise monotoonsus) 3) Kehtib pidevuse aksioom - Igal ülalt tõkestatud reaalarvude hulgal on olemas ülemine raja ja igal alt tõkestatud reaalarvude hulgal on olemas alumine raja. 4) Geomeetriline mudel – arvsirge (üksühene vastavus reaalarvude ja arvsirge punktide vahel) – Arvsirge on reaalarvude hea geomeetriline mudel. Positiivsele arvule a seame arvsirge positiivsel poolel vastavusse punkti, mille kaugus nullpunktist on a, negatiivse a puhul fikseerime arvtelje negatiivsel poolel punkti kaugusel −a. Pidevuse aksioom (P) garanteerib selle, et igale arvsirge punktile vastab mingi üheselt määratud reaalarv.

Matemaatiline analüüs
54 allalaadimist
thumbnail
23
doc

Matemaatiline analüüs KT1 vastused

nimetatakse muutuvaks suuruseks ehk muutujaks. Suurust, mille arvuline väärtus ei muutu, nimetatakse jäävaks suuruseks. Suuruse muutumispiirkond- Muutuva suuruse kõigi võimalike väärtuste hulka nimetatakse selle suuruse muutumispiirkonnaks. Funktsiooni definitsioon- Olgu antud 2 muutuvat suurust x ja y. Funktsiooniks nimetatakse kujutist, mis seab suuruse x igale väärtusele tema muutumispiirkonnast vastavusse suuruse y ühe kindla väärtuse. Funktsiooni argument- muutuja x, sõltumatu. Sõltuv muutuja- muutuja y. Määramispiirkond- argumendi x muutumispiirkonda. Tähis X. y= f(x). Väärtuste hulk- Hulka Y = {f(x) || x kuulub X} Funktsiooni esitamine tabelina- Funktsiooni argumendi võimalikud väärtused esitatakse tabeli ühes reas (veerus) ja neil vastavad funktsiooni väärtused tabeli teises reas (veerus). On võimalik vaid siis, kui funktsiooni argumendil on lõplik arv väärtusi. Funktsiooni esitamine analüütiliselt- Funktsioon esitatakse valemi kujul

Matemaatiline analüüs I
105 allalaadimist
thumbnail
8
docx

Matemaatiline analüüs I 2. teooria KT vastused

TÕESTUSED, TULETUSKÄIGUD, PÕHJENDUSED!!! 23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana y = f'(a)x + , kus = r(x)x Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). funktsiooni muut y koosneb kahest liidetavast, millest esimene on diferentsiaal dy = f'(a)x ja teine on . M~olemad liidetavad on l~opmatult kahanevad protsessis x 0. V~ordleme neid suurusi x suhtes. Esiteks, eelduse f'(a) 0 p~ohjal saame lim dy x= lim f'(a)/x* x= lim f'(a) = f(a) 0. x0 x0 x0 Teiseks kehtib lim / x = lim r(x)x /x = lim r(x) = 0. x0 x0 x0 N¨aeme, et esimene liidetav, so diferentsiaal dy on sama j¨arku l~opmatult kahanev suurus kui

Matemaatika
47 allalaadimist
thumbnail
25
doc

MATEMAATILINE ANALÜÜS I TEOORIA KONTROLLTÖÖ Küsimused vastustega

arvulisi väärtusi, nimetatakse muutuvaks suuruseks ehk muutujaks. Suurust, mille arvuline väärtus ei muutu, nimetatakse jäävaks suuruseks. Suuruse muutumispiirkond- Muutuva suuruse kõigi võimalike väärtuste hulka nimetatakse selle suuruse muutumispiirkonnaks. Funktsiooni definitsioon- Olgu antud 2 muutuvat suurust x ja y. Funktsiooniks nimetatakse kujutist, mis seab suuruse x igale väärtusele tema muutumispiirkonnast vastavusse suuruse y ühe kindla väärtuse. Funktsiooni argument- muutuja x, sõltumatu. Sõltuv muutuja- muutuja y. Määramispiirkond- argumendi x muutumispiirkonda. Tähis X. y= f(x). Väärtuste hulk- Hulka Y = {f(x) || x kuulub X} Funktsiooni esitamine tabelina- Funktsiooni argumendi võimalikud väärtused esitatakse tabeli ühes reas (veerus) ja neil vastavad funktsiooni väärtused tabeli teises reas (veerus). On võimalik vaid siis, kui funktsiooni argumendil on lõplik arv väärtusi. Funktsiooni esitamine analüütiliselt- Funktsioon esitatakse valemi kujul

Matemaatiline analüüs 1
43 allalaadimist
thumbnail
23
docx

MATEMAATILINE ANALÜÜS TÖÖ VASTUSED

paremal pool avaldis, mis võib sisaldada muutujat x ,kuid mitte y. · Ilmutamata funktsioon ­ Funktsiooni ilmutamata kujuks on võrrad, mis sisaldab x ja y läbisegi · Parameetrilisel kujul antud joon ­ Olgu antud lõigul kaks funktsiooni ja . Kirjutame nad üles süsteemina: Süsteem saab iga korral ühe kindla arvupaari, ehk tasandil punkti ristkordinaatidega . Üldiselt vastavad muutujale t ka erinevad tasandi punktid, kui muutuja t jookseb läbi kogu lõigu, siis t-le vastav punkt kujundab tasandile vastava joone. Muutujat t nimetame joone parameetriks. · Parameetrilisel kujul antud funktsioon ­ Vaateleme funktsiooni ja lisaks muutujale x ja y toome ka sisse kolmanda muutuja t (parameetri). Olgu muutuja x parameetri t funktsioon ehk , siis saab muutujat y avaldada parameetri t kaudu. tähistades saame . Võtame need kaks võrrandit kokku ühte süsteemi

Matemaatika analüüs I
104 allalaadimist
thumbnail
15
docx

Matemaatika analüüsi II Kontrolltöö

Matemaatilise analüüsi II Kontrolltöö 1. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. a. Teades, et ­argumendi muut kohal a -funktsiooni muut kohal a a.i. Nii me näitasime, et a.ii. Tähistades ja vahe järgmiselt a.iii. Kehtib võrratus: a.iv. Et avaldada väärtust kaudu peame kõigepealt avaldama suhte: a.v. Korrutades saadud avaldist saame:

Matemaatiline analüüs 2
100 allalaadimist
thumbnail
22
docx

Kõrgem matemaatika 1 kordamisküsimused 2017/2018

võrdsed, so rank( A) = rank( AL). 10.Lineaarse võrrandisüsteemi definitsioon. Lineaarvõrrandite süsteemi esimest, teist ja kolmandat tüüpi elementaarteisenduseks. Gaussi meetodi sisu. 11.Kompleksarvu mõiste, imaginaarühik, kompleksarvu reaalosa ja imaginaarosa, kompleksarvude võrdsus, kaaskompleksarv. Kompleksarvude liitmise, korrutamise ja jagamise valemid. Kompleksarvu moodul, argument ja trigonomeetriline kuju. Kompleksarvu geomeetriline tõlgendus, kaaskompleksarvude ja kompleksarvude summa geomeetriline tõlgendus. Trigonomeetrilisel kujul antud kompleksarvude korrutamise, jagamise, astendamise valemid. Kompleksarvuks z nimetatakse avaldist z = a + bi (1.3) kus a ja b on reaalarvud ja i on imaginaarühik. Arvu a nimetatakse kompleksarvu reaalosaks ja teist liidetavatbi aga tema imaginaarosaks. Arvu, mille ruut on - 1 , nimetatakse imaginaarühikuks ja tähistatakse sümboliga i.

Kõrgem matemaatika
135 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun