Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Matemaatiline analüüs I - kordamine eksamiks (ainekava järgi koostatud konspekt) - sarnased materjalid

integraal, piirväärtus, tuletis, diferentseeruv, teoreem, koonduvus, tähistus, puutu, puutuja, diferentsiaal, muutuja, algfunktsioon, graafik, reaalarv, määramis, lagrange, newton, liitfunktsioon, arvrea, reaalarvud, tangens, ositi, lõpmatuonaal, piirväärtused, ekstreemum, geomeetriline, parajasti, kusjuures, lokaalne, kumer, koonduvuse
thumbnail
26
doc

Matemaatiline analüüs I - kordamine eksamiks

x a või f(x) A, kui x a. Näide . Tõestame,et lim x1 (2x + 1) = 3. Olgu > 0 suvaline.Siis f(x) - A=(2x+1)-3 = 2x-1< , kui x-1< . Seega võttes = , näeme, et definitsiooni 1nõuded on täidetud. 2 2 Definitsioon 2. Öeldakse, et funktsioonil f on lõpmatu piirväärtus piirprotsessis . x a, kui iga arvu N > 0 korral leidub arv > 0, nii et f(x) > N ( f(x) < -N ), alati kui 0 < | x - a | < . Kirjutame lim xa f(x) = ( vastavalt lim xa f(x) = - ). 2. Funktsiooni piirväärtuse omadused Teoreem 2. Kui eksisteerivad lõplikud piirväärtused lim xa f(x) = A ja lim xa g(x) = B, siis 1) lim xa [ f(x) ± g(x)] = A ± B, 2) lim xa [ c f(x)] = c A, 3) lim xa [ f(x) g(x)] = A B,

Matemaatiline analüüs i
687 allalaadimist
thumbnail
39
pdf

Matemaatiline analüüs I konspekt -Tõkestatud hulgad

Areakootangens y = arcth x X = (- ,1) (1, ) Y = (- ,0 ) (0, ) y = arsh x y = arch x y = arth x y = arcth x 6 Kordamine matemaatilise analüüsi I eksamiks matemaatika-informaatika teaduskonnas 04/05 õ.a II PIIRVÄÄRTUS Piirväärtuse mõiste Jada piirväärtus Jada ( x n ) võib vaadelda kui funktsioni f , mis on antud valemiga f (n ) = x n , kus n N , s.o. kui funktsiooni f , mille määramispiirkond X = N. 1. Jada (lõplik) piirväärtus Definitsioon: Arvu a nimetatakse jada ( x n ) piirväärtuseks, kui iga arvu > 0 korral leidub selline arv N = N ( ) , et kehtib võrratus x n - a < , alati kui n > N , ja kirjutatakse lim x n = a

Matemaatiline analüüs I
73 allalaadimist
thumbnail
32
doc

Matemaatika I küsimused ja mõisted vastustega

ühepoolsed piirväärtused f ( a+) = lim f(x); x a+ ja f( a- ) = lim f(x); x a - nimetatakse 1. liiki katkevuspunktiks. ( hüppekoht, kõrvaldatav katkevuskoht, ................................................... 3 17. Teist liiki katkevuspunkt - arvu a nimetatakse funktsiooni y = f(x) teist liiki katkevuspunktiks, kui lim f(x); x a - on lõpmatu või ei eksisteeri ............................................ 4 20. Diferentseeruv funktsioon - kui funktsioonil y = f(x) on tuletis punktis x = x0, siis ütleme, et funktsioon on diferentseeruv punktis x0. Kui funktsioon on aga diferentseeruv mingi piirkonna igas punktis, öeldakse, et funktsioon on diferentseeruv selles piirkonnas. ..................................... 4 1. Arvuhulgad: naturaal-, täis-, ratsionaal-, reaal- ja kompleksarvud. Nende omadused. ...............6 2. Reaalarvu absoluutväärtus, absoluutväärtuse omadused. ............................................................6 Absoluutväärtuse omadused..

Matemaatika
118 allalaadimist
thumbnail
37
docx

Matemaatiline analüüs l.

järgnev. Muutuva suuruse piirväärtuse üldine definitsioon on järgmine: Olgu x järjestatud muutuv suurus. Arvu a nimetatakse muutuva suuruse x piirväärtuseks, kui iga kuitahes väikese positiivse arvu korral saab näidata sellist suuruse x väärtust, millest alates kõik järgnevad muutuva suuruse väärtused kuuluvad arvu a ümbrusesse (a - , a + ), st rahuldavad võrratust |x - a| < . Kui arv a on suuruse x piirväärtus, siis öeldakse, et suurus x läheneb arvule a ehk koondub arvuks a ja kirjutatakse x a või lim x = a . Muutuv suurus x läheneb vasakult arvule a, kui iga kuitahes väikese positiivse arvu korral saab näidata sellist suuruse x väärtust, millest alates kõik järgnevad muutuva suuruse väärtused kuuluvad poollõiku (a - , a]. Sellisel juhul kirjutatakse x a- Muutuv suurus x läheneb paremalt arvule a, kui iga kuitahes väikese positiivse arvu korral saab

Matemaatiline analüüs
484 allalaadimist
thumbnail
156
pdf

Kõrgem matemaatika

. . . . . . . . . . . . . . . . 29 3.5 Põhilised elementaarfunktsioonid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 SISUKORD 3.6 Elementaarfunktsioonid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.7 Jadad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4 Funktsiooni piirväärtus ja pidevus 37 4.1 Jada piirväärtus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.2 Funktsiooni piirväärtuse mõiste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.3 Ühepoolsed piirväärtused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.4 Funktsiooni piirväärtuse omadused . . . . . . . . .

Kõrgem matemaatika
94 allalaadimist
thumbnail
32
pdf

Matemaatiline analüüs II konspekt - MITME MUUTUJA FUNKTSIOONID

Kirjutame: z = f (P ) või z = f ( x1 ,..., x m ) Hulka D nimetatakse funktsiooni f määramispiirkonnaks. Funktsiooni z = f (P ) loomulikuks määramispiirkonnaks nimetatakse punktide P hulka, mille korral funktsiooni määrav eeskiri omab mõtet. Def. M-muutuja funktsiooni f graafikuks nimetatakse hulka { ( f ) = ( x1 ,..., x m , z ) R m +1 : ( x1 ,..., x m ) R m , z = f ( x1 ,..., x m ) . } 3. Mitme muutuja funktsiooni piirväärtus Olgu antud funktsioon z = f (P ) = f (x1 ,..., x m ) P D ja punkt A D D . Def. Arvu nimetatakse funktsiooni z = f (P ) piirväärtuseks punktis A , kui iga arvu > 0 korral leidub niisugune arv ( ) > 0 nii, et kehtib võrratus f (P ) - < alati kui 0 < d (P, A) < . Kirjutame: lim f (P ) = või lim f (x1 ,..., x m ) = või f (P ) kui P A

Matemaatiline analüüs II
187 allalaadimist
thumbnail
51
pdf

Enno Paisu konspekt

3) logaA(x) A(x) >0 arcsin A( x) 4) -1 A( x) 1 arccos A( x) Funktsiooni y=f(x) pöördfunktsiooniks nim. f-ni y=g(x), mis igale funktsiooni f väärtusele y seab vastavusse need argumendi x väärtused, mille korral y=f(x) Olgu funktsioonid y=f(x) ja y=g(x), siis väärtus y on teisendatud argumendi x liitfunktsiooniks ehk kompositsiooniks y=f[g(x)]=f*g(x) © 2001 - Ivari Horm ([email protected]), Toomas Sarv 1 Funktsiooni piirväärtus. Teoreemid piirväärtuste kohta (tõestusega). Arv a on funktsiooni y=f(x) piirväärtuseks tingimusel, et xx0, kui >0, () >0, et 0< x-x0< f(x)-a< Selleks, et funktsioonil y = f (x) oleks piirväärtus, kui xx0 on piisav ja tarvilik, et eksisteeriksid ühepoolsed piirväärtused ja et nad oleks võrdsed. lim f ( x) = lim f ( x) = a x x0 - 0 x x0 + 0 Teoreemid piirväärtuste kohta. Teoreem 1 Selleks, et funktsioonil oleks piirväärtus on piisav ja tarvilik, et

Matemaatiline analüüs
179 allalaadimist
thumbnail
51
pdf

Matemaatilise analüüsi konspekt

3) logaA(x) A(x) >0 arcsin A( x) 4) -1 A( x) 1 arccos A( x) Funktsiooni y=f(x) pöördfunktsiooniks nim. f-ni y=g(x), mis igale funktsiooni f väärtusele y seab vastavusse need argumendi x väärtused, mille korral y=f(x) Olgu funktsioonid y=f(x) ja y=g(x), siis väärtus y on teisendatud argumendi x liitfunktsiooniks ehk kompositsiooniks y=f[g(x)]=f*g(x) © 2001 - Ivari Horm ([email protected]), Toomas Sarv 1 Funktsiooni piirväärtus. Teoreemid piirväärtuste kohta (tõestusega). Arv a on funktsiooni y=f(x) piirväärtuseks tingimusel, et xx0, kui >0, () >0, et 0< x-x0< f(x)-a< Selleks, et funktsioonil y = f (x) oleks piirväärtus, kui xx0 on piisav ja tarvilik, et eksisteeriksid ühepoolsed piirväärtused ja et nad oleks võrdsed. lim f ( x) = lim f ( x) = a x x0 - 0 x x0 + 0 Teoreemid piirväärtuste kohta. Teoreem 1 Selleks, et funktsioonil oleks piirväärtus on piisav ja tarvilik, et

Matemaatiline analüüs
11 allalaadimist
thumbnail
82
docx

Matemaatiline analüüs I kordamine eksamiks

Kui h (x) := x2 + 1 ja f (x) :=(x – 1)1/2, siis h ◦ f (x) = h (f (x)) = (f (x)) 2 + 1 = (x − 1) + 1 = x iga x ∈ [1,∞) korral. Seega h ◦ f : [1,∞) → [1,∞) on identsusfunktsioon intervallis [1,∞)  Kui h (x) := x2 + 1 ja f (x) :=(x – 1)1/2, siis h ◦ f (x) = h (f (x)) = (f (x))2 + 1 = (x − 1) + 1 = x iga x ∈ [1,∞) korral. Seega h ◦ f : [1,∞) → [1,∞) on identsusfunktsioon intervallis [1,∞) . 7. Jada piirväärtus, selle ühesus Arvjada mõiste - Arvjadaks nimetatakse funktsiooni, mille määramispiirkonnaks x  x (n), n  1,2,.... on kõigi naturaalarvude hulk N. Defineerida jada piirväärtus ning koonduvad ja hajuvad jadad, tuua näiteid koonduvatest ja hajuvatest jadadest. Arvu a nimetatakse jada (xn) piirväärtuseks (kirjutame kas või xn → a), kui ∀ε > 0 ∃N ∈ IN : n ≥ N ⇒ |xn − a| < ε.

Matemaatiline analüüs
54 allalaadimist
thumbnail
2
pdf

Matemaailine analüüs I kollokvium III spikker

(integreerimiskonstant), nimetatakse funktsiooni f (x) määramata integraaliks ja 0 tähistatakse () st () = () + . Määramata integraali tuletis on tingimuste f(x) = O(1), g(x) = O(1) (x [, ]) põhjal(( )- f( )) 0. võrdne integreeritava funktsiooniga st ( ())'= f(x)

Matemaatika analüüs I
139 allalaadimist
thumbnail
36
pdf

Matemaatiline analüüs

Matemaatiline analüüs 23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu ∆x suhtes, kui ∆x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. Funktsiooni muudu esitus: ∆y = f’(a)∆x + β , kus β = r(∆x)∆x Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu ∆ x suhtes, kui ∆ x läheneb nullile? (tõestada!). funktsiooni muut ∆y koosneb kahest liidetavast, millest esimene on diferentsiaal dy = f’(a)∆x ja teine on β. Mõlemad liidetavad on lõpmatult kahanevad protsessis ∆x → 0. Võrdleme neid suurusi ∆x suhtes. Esiteks, eelduse f’(a)  0 põhjal saame lim dy ∆x= lim f’(a)/∆x* ∆x= lim f’(a) = f(a)  0. ∆x→0 ∆x→0 ∆x→0 Teiseks kehtib

Matemaatiline analüüs 1
14 allalaadimist
thumbnail
21
docx

Matemaatiline analüüs 1, teine teooriatöö kordamisküsimused

23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana y ' =f ( a ) +r ( x ) x Korrutame saadud avaldise x-ga ja saame y=f ' ( a ) x+ , kus =r ( x ) x Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (Tõestada) ' lim f ( a ) x dy lim r ( x ) x =¿ x o = lim f ' ( a )=f ' ( a ) 0 x x x o lim = x o = lim r ( x ) =0 lim ¿ x o x x x o x o

Matemaatika
10 allalaadimist
thumbnail
177
pdf

ÜHE MUUTUJA MATEMAATILINE ANALÜÜS

. . . . . . . . . . . . 33 2.1.4 Tähtsad piirväärtused . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2 Koonduvuseteooria neli printsiipi . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2.1 Monotoonsuseprintsiip . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2.2 Bolzano–Weierstrassi teoreem . . . . . . . . . . . . . . . . . . . . . . 36 2.2.3 Cauchy kriteerium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2.4 Cantori teoreem üksteisesse sisestatud lõikudest . . . . . . . . . . . . 38 2.2.5 Reaalarvu kümnendesitus . . . . . . . . . . . . . . . . . . . . . . . . 39 2.2.6 Arv e . . . . . . . . . . . . . . . . . . . .

Algebra I
8 allalaadimist
thumbnail
8
docx

Matemaatiline analüüs I 2. teooria KT vastused

TÕESTUSED, TULETUSKÄIGUD, PÕHJENDUSED!!! 23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana y = f'(a)x + , kus = r(x)x Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). funktsiooni muut y koosneb kahest liidetavast, millest esimene on diferentsiaal dy = f'(a)x ja teine on . M~olemad liidetavad on l~opmatult kahanevad protsessis x 0. V~ordleme neid suurusi x suhtes. Esiteks, eelduse f'(a) 0 p~ohjal saame lim dy x= lim f'(a)/x* x= lim f'(a) = f(a) 0. x0 x0 x0 Teiseks kehtib lim / x = lim r(x)x /x = lim r(x) = 0. x0 x0 x0 N¨aeme, et esimene liidetav, so diferentsiaal dy on sama j¨arku l~opmatult kahanev suurus kui

Matemaatika
47 allalaadimist
thumbnail
5
doc

Matemaatilise analüüsi 2.kollokviumi

Mitmemuutuja funktsiooni mõiste. Mitmemuutuja funktsiooni piirväärtuse definitsioon. Pideva mitmemuutuja Kui funktsiooni z=f(x,y) on diferentseeruv kohal (x,y), siis funktsioon f on pidev sellel kohal. funktsiooni definitsioon. Kahemuutuja funktsiooni pidevuse geomeetriline sisu. Funktsioon z=f(x,y) on diferentseeruv kohal (x,y) siis, kui funktsioonil z=f(x,y) on pidevad osatuletised fx ja fy kohal (x,y). Kui hulga Rn igale punktile P(x1, . . . , xn) on vastavusse seatud muutuja u R kindel väärtus, siis öeldakse, et hulgal on Kui funktsiooni f(x,y) osatuletised fx(x,y) ja fy(x,y) on diferentseeruvad kohal (x,y), siis fxy = fyx kohal (x,y). defineeritud n-muutuja (skalaarväärtusega) funktsioon

Matemaatiline analüüs 2
37 allalaadimist
thumbnail
16
doc

Kordamisküsimused - vastused

ruumi Rm+1 alamhulka ={(x1,x2,...,xm,f(x1,x2,...,xm))||P(x1,x2,...,xm)D} 2. Nivoojooned ja pinnad Kahemuutuja funktsiooni z=f(x,y) nivoojooneks nimetatakse joont, mille moodustavad piirkonna D punktid (x,y) mille korral f(x,y)=C, kus C on etteantud konstant Skalaarvälja f ehk funktsiooni f nivoopinnaks nimetatakse pinda, mis koosneb piirkonna D punktidest (x,y,z) mille korral f(x,y,z)=C, kus C on etteantud konstant. 3. Mitme muutuja funktsiooni piirväärtus ja pidevus Mitmemuutuja funktsiooni piirväärtus m-muutuja funktsioonil f on piirväärtus b punktis A kui suvalises piirprotsessis PA, mis rahuldab tingimust PA, funktsiooni väärtus f(P) läheneb arvule b Mitmemuutuja funktsiooni pidevus Olgu antud mitmemuutuja funktsioon z=f(P) määramispiirkonnaga D. Funktsiooni f nimetatakse pidevaks punktis A kui AD; eksisteerib piirväärtus lim f ( P ) ; lim f ( P ) = f ( A) PA PA

Matemaatiline analüüs 2
511 allalaadimist
thumbnail
18
docx

Matemaatiline analüüs KT2 vastused

23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. Funktsiooni muudu peaosa ja jääkliige. Olgu antud funktsioon, mis on diferentseeruv punktis a. Eeldame, et f(a)0 kasutades mõisteid: x = x - a - argumendi muut kohal a y = f(x) - f(a) - funktsiooni muut kohal a . Näitasime, et Seega kui tähistame ja f'(a) vahe järgmiselt : Kehtib võrdus Püüame avaldada funktsiooni muutu y argumendi muudu x kaudu. Selleks

Matemaatiline analüüs I
121 allalaadimist
thumbnail
14
pdf

Matemaatiline analüüs II

muutuja funktsiooniks. Geom ­ hüperpind n+1-mõõtmelises ruumis. Füüsikaliselt on nMF skalaarväli. Def: funktsiooni w=f(P), P Rn MP-ks nim nende punktide hulka, mille puhul funktsiooni väärtus on lõplik. MP={P(x1,...,xn) Rn | w=f(P) f(x1,...,xn) < } Rn Def: nivoopinnad on MP-a niisuguste punktide hulk, kus funktsiooni väärtus on konstantne. f(P)=const. Lause1. nivoojoonad ei lõiku, aga iga punkti läbib kindlasti nivoopind. Mitme muutuja funktsiooni piirväärtus. Pidevus Def: PKA lim K x Kii = i ; P(xki), A(ai), i=1,...,n Def: arv on funktsiooni f(P) piirväärtuseks protsessis, kus PKA, sel korral kui vastavalt igale epsiloni väärtusele leidub delta epsilon, et funktsiooni |f(P) ­ | on väiksem kui delta epsilon, niipea kui punktide,|PK A| < epsilonist, vaheline kaugus on väiksem kui epsilon. lim K f ( PK ) = Kordne piirväärtus! Def: funktsioon f(P) on pidev sel korral, kui funktsiooni piirväärtus,protsessis PA, on võrdne f(A).

Matemaatiline analüüs 2
336 allalaadimist
thumbnail
12
docx

Matemaatiline analüüs I 3. kollokviumi spikker

Küsimused: 1.Määratud integraali (Riemanni mõttes) definitsioon. Darbouc ülem- ja alamsummad. Riemanni summa ja Darboux’ summade seos-viimane pilt. ∫ f ( x ) dx st ∫ f ( x ) dx=F ( x ) +C . Määramata integraali tuletis on f (¿ ξi) ∆ xi SΠn n võrdne integreeritava funktsiooniga st ( ∫ f ( x ) dx )’= f(x). Tõestus: ( ∫ f ( x ) dx Riemanni summa lõigul [a,b] (f) =

Matemaatiline analüüs 1
24 allalaadimist
thumbnail
3
docx

Matemaatiline analüüs 1

23Funktsiooni muudu peaosa ja jääkliige. Olgu antud funktsioon, mis on diferentseeruv punktis a. Eeldame, et f(a)0 26l'Hospitali reegli põhjal saab 0/0 tüüpi määramatusega piirväärtuse arvutamisel üle minna piirväärtusele, mille all kasutades mõisteid: esineb esialgse murru lugeja tuletise ja nimetaja tuletise jagatis.

Matemaatiline analüüs 1
66 allalaadimist
thumbnail
4
doc

Matemaatiline analüüs - teooria spikker

27. Trigonomeetriliste avaldiste integreerimine. 28. Määratud integraal ja selle omadused. 1. Funktsioon. Määramispiirkond, väärtuste hulk. Me vaatleme integraali (sinx,cosx)dx Keskväärtusteoreem (tõestusega). Pöördfunktsioon. 1. Universaalne asendus tan x/2=t Olgu y=f(x) pidev lõigul [a,b] Jaotame lõigu n osaks punktidega 2. Funktsiooni piirväärtus. Teoreemid piirväärtuste x0=a, x1, x2,..,xn=b kohta (tõestusega). J={x0,x1,..,xn} lõigu [a,b] jaotus 3. Lõpmatult vähenevad suurused ja nende järk. Igal lõigukesel xi=xi-xi-1 i=1,2,..,n võtame punkti i =[xi-1,xi] 4

Matemaatiline analüüs
973 allalaadimist
thumbnail
6
docx

Matemaatilise analüüsi eksamiks valmistumine

Ehk liitfunktsioon on pidev, kui selle funktsiooni koostisosad on pidevad. See tulemus kehtib ka siis, kui liitfunktsioonil on mitu koostisosa. x y = cos 3 NT: Funktsioon 2 on kõikjal pidev, sest tema koostisosad x v= y = u , u = cos v ja 3 2 on kõikjal pidevad. 6. Tuletise mõiste, tuletise geomeetriline interpretatsioon (joone puutuja kaudu). funktsiooni tuletis - Funktsiooni y = f (x) tuletiseks f ´(x) kohal x nimetatakse piirväärtust x f ( x + x ) - f )( x ) f ( x ) = lim = lim x 0 y x 0 x kui see piirväärtus eksisteerib. dy df ( x ) f ( x ), y , y x , , Tuletise tähised: dx dx Geomeetriline interpretatsioon e. joone puutujaks punktis P nimetatakse lõikaja

Matemaatiline analüüs
136 allalaadimist
thumbnail
10
doc

Matemaatiline analüüs I konspekt - funktsioon

Liitfunktsioon koosneb mitmest funktsioonist. Pöördfunktsioon Olgu y=f(x) mingi funktsioon, kus x on argument ja y funktsioon.Kui lahendada see võrrand x suhtes, samme x=p(y). Nende graafikud on samad. Tuleb vahetada argumendi ja funktsiooni tähistused saame funktsiooni y=p(x) Pöördfunktsiooni graafik on sümmeetriline algfunktsiooni graafikuga esimese ja kolmanda veeerandi nurgapoolitaja suhtes.(y=x2 y= -+ x ) Piirväärtus Lõpmata väike suurus, selle omadused. Muutuvat suurust, mille piirväärtus on null, nimetakse lõpmata väikseks. Omadused: Lõpliku arvu lõpmata väikeste suuruste summa on lõpmata väike suurus Tõkestatud muutuva suuruse ja lõpmata väikese suuruse korrutis on lõpmata väike suurus Lõpliku arvu lõpmata väikeste suuruste korrutis on lõpmata väike suurus. Arv e Arv e=2,71828... on irratsionaalarv, selle väärtust ei saa täpselt esitada. Logaritm alusel e, st logaritmi logex nim naturaallogaritmiks ja tähistatakse lnx. Piirväärtuse arvutamine

Matemaatiline analüüs
259 allalaadimist
thumbnail
8
doc

Kordamisküsimused aines "Matemaatiline analüüs I"

vahetame x ja y ära. Näiteks : y=2x ; x=0,5y ; y=0,5x , seega y=2x pöördfunktsioon on y=0,5x. Funktsiooni y = f(x) pöördfunktsiooniks nimetatakse funktsiooni y =( x ) .Pöördfunktsiooni graafik on sümmeetriline algse funktsiooni graafikuga, sirge y=x suhtes. Teineteise pöördfunktsioonideks on: eksponent- ja logaritmfunktsioon , tirgonomeetrilised ja arkusfunktsioonid. Piirväärtus Lõpmata väike suurus, selle omadused- Muutuvat suurust, mille piirväärtus on null, nimetatakse lõpmata väikeseks suuruseks. Lõpmata väikese suuruse omadused: 1. Lõpmata väikeste suuruste summa on lõpmata väike(0+0=0) 2. Tõkestatud suuruse ja lõpmata väikese suuruse korrutis on lõpmata väike (A*0=0) 3. Lõpmata väikeste suuruste korrutis on ka lõpmata väike (0*0=0) 1 Lõpmata väikesi suurusi ja nimetatakse sama järku lõpmata väikesteks suurusteks, kui

Matemaatika analüüs I
159 allalaadimist
thumbnail
1080
pdf

Matemaatiline analüüs terve konspekt

Jada piirva¨ artus. ¨ Arv e. Funktsiooni piirva¨ artus. ¨ Joone asumptoodid. ¨ ~ Lopmata ¨ vaikesed ja ~ lopmata ~ suured suurused. Funktsiooni pidevus. Loigul pidevate funktsioonide omadused. Funktsiooni tuletis. Liitfunktsiooni tuletis. Po¨ ordfunktsiooni ¨ tuletis. Parameetri-liselt esitatud funktsiooni tuletis. Ilmutamata ~ funktsiooni tuletis. Logaritmiline diferentseerimine. Pohiliste elementaarfunktsioonide tuletised. ~ Korgemat ¨ jarku tuletised. Leibnizi valem. Funktsiooni diferentsiaalid. Funktsiooni kasvamine ja kahanemine

Matemaatiline analüüs 1
136 allalaadimist
thumbnail
16
docx

J. Kurvitsa teooria vastused

1. Kollokvium 1. Hulga mõiste. Järjestatud hulk. Tehted hulkadega. Arvuhulgad. Teoreem. Ei leidu ratsionaalarvu, mille ruut on 2 (tõestada). Tõkestatud hulgad (näide). Tõkestamata hulgad (näide). Hulk koosneb elementidest, kusjuures elemendid ei kordu ja nende järjestus ei ole kindlaks määratud. Järjestatud hulk koosneb samuti elementidest, kuid selles hulgas on iga kahe elemendi kohta võimalik öelda, kumb neist on eelnev, kumb järgnev. Tehted hulkadega: * Hulkade A ja B ühendiks ehk summaks nimetatakse hulka, mille moodustavad kõik kas

Matemaatiline analüüs
195 allalaadimist
thumbnail
142
pdf

Matemaatilise analüüsi konspekt TTÜ's

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.8 L~opmatult kahanevate ja l~opmatult kasvavate suuruste v~ordlemine. 43 2.9 Funktsiooni pidevus. Katkevuspunktide liigitus. . . . . . . . . . . 45 ¨ 2.10 Uhepoolne pidevus. Pidevus hulkadel. Elementaarfunktsioonide pidevus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.11 L~oigul pidevate funktsioonide omadusi. . . . . . . . . . . . . . . . 52 3 Tuletis ja diferentsiaal 57 3.1 Tuletise, diferentseeruva funktsiooni ja diferentsiaali m~oisted. . . 57 3.2 N¨aiteid tuletiste kohta rakendustes. . . . . . . . . . . . . . . . . . 60 3.3 Tuletiste arvutamise p~ohireeglid . . . . . . . . . . . . . . . . . . . 61 3.4 Ilmutamata funktsiooni, p¨o¨ordfunktsiooni ja parameetrilise funk- tsiooni diferentseerimine. . . . . . . . . . . . . . . . . . . . . . . . 62

Matemaatiline analüüs
47 allalaadimist
thumbnail
142
pdf

Matemaatiline analüüs I

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.8 L~opmatult kahanevate ja l~opmatult kasvavate suuruste v~ordlemine. 43 2.9 Funktsiooni pidevus. Katkevuspunktide liigitus. . . . . . . . . . . 45 ¨ 2.10 Uhepoolne pidevus. Pidevus hulkadel. Elementaarfunktsioonide pidevus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.11 L~oigul pidevate funktsioonide omadusi. . . . . . . . . . . . . . . . 52 3 Tuletis ja diferentsiaal 57 3.1 Tuletise, diferentseeruva funktsiooni ja diferentsiaali m~oisted. . . 57 3.2 N¨aiteid tuletiste kohta rakendustes. . . . . . . . . . . . . . . . . . 60 3.3 Tuletiste arvutamise p~ohireeglid . . . . . . . . . . . . . . . . . . . 61 3.4 Ilmutamata funktsiooni, p¨o¨ordfunktsiooni ja parameetrilise funk- tsiooni diferentseerimine. . . . . . . . . . . . . . . . . . . . . . . . 62

Matemaatika
42 allalaadimist
thumbnail
9
doc

Matemaatiline analüüs - konspekt I

Näiteks kui f(x)=ex, siis f-1(y)=lny ja iga x korral ln(ex)=x. Pöördfunktsiooni f-1 leidub ainult niisugusel funktsioonil f, mis on kogu oma määramispiirkonnas kas kasvav või kahanev, sest üksnes selline f korraldab üksühese vastavuse oma määramispiirkonna ja muutumispiirkonna vahel. Kui funktsioon f rahuldab nimetatud tingimust vaid oma määramispiirkonna mingil osahulgal, siis saab rääkida üksnes selle funktsiooni vastava lahendi pöördfunktsioonist. Kui funktsiooni f tuletis f' on kohal x nullist erinev, siis pöördfunktsiooni f-1 tuletis kohal y=f(x) saab avaldada kujul ( f -1 )' ( y ) = f '1( x ) = f ' ( f 1-1 ( y ) ) 4. Funkts. Piirväärtus. Ühepoolsed piirväärtused. Funktsiooni piirv. Def: Funktsioonil f on piirväärtus b kohal a kui suvalises piirprotsessis xa, mis rahuldab tingimust x a, funktsiooni väärtus f(x) läheneb arvule b. Funktsiooni piirväärtuse kirjutusviis on: lim(xa) f(x) = b või f(x) b kui xa

Matemaatiline analüüs
598 allalaadimist
thumbnail
20
docx

MATEMAATILINE ANALÜÜS I

X; muutumispiirkond Y Näited: 2. Funktsiooni graafik (definitsioon, piltlik esitus). Definitsioon: funktsiooni graafik= {(x,f(x)): x∈X} Piltlikult: 3. Pöördfunktsioon (definitsioon). Näiteid. Kuidas leida pöördfunktsioone? Definitsioon: funktsiooni kujul f(x)-1 nimetatakse pöördfunktsiooniks Leidmine: 4. Põhilised elementaarfunktsioonid. Nende omadused (määramis- ja muutumispiirkonnad) ja graafikud. 5. Funktsiooni piirväärtus (definitsioon, tähistus). Graafiline esitus (ülesanne lk 7). Millal piirväärtus ei eksisteeri? Definitsioon: Arvu L nimetatakse funtsiooni piirväärtuseks kohal a, kui iga ε>0 puhul leidub niisugune arv δ>0, et iga x≠a puhul, mis rahuldab värratus |x-a|< δ, kehtib värratus |f(x)-L|< ε Piirväärtus ei eksisteeri: 1. Parem-ja vasakpoolsed piirväärtused eksiteerivad kuid ei võrdu 2

Matemaatiline analüüs 1
36 allalaadimist
thumbnail
16
docx

Matemaatiline analüüs 2 KT

KT 2, MAT. ANALÜÜS 18. Esitada funktsiooni muut diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu ∆x suhtes, kui ∆x läheneb nullile? Tõestada ei ole vaja.  ∆y = f’(a)∆x + β  Diferentsiaal ja jääkliige on lõpmatult kahanevad protsessis ∆x → 0. 19. Funktsiooni lokaalsete ekstreemumite definitsioonid. Sõnastada Fermat’ lemma (tõestust ei küsi). Öeldakse, et funktsioonil f on punktis x1 lokaalne maksimum, kui 1. funktsioon f on määratud punkti x1 mingis ümbruses (x1 − ɛ, x1 + ɛ); 2. iga x ∈ (x1 − ɛ, x1 + ɛ) korral kehtib võrratus f(x) ≤ f(x1).

Matemaatika
14 allalaadimist
thumbnail
20
docx

Kõrgem matemaatika II eksamimaterjal

koondub Arvrea tingimisi Kui rida koondub, aga ei koondu absoluutselt, siis nimetatakse seda rida koonduvus tingimisi koonduvaks D'Alambert'i |u ( n+1 )| { ¿1, siis rida koondub absoluutselt koonduvustunnus Kui leidub piirväärtus ¿ u ( n )¿ ¿ 1, siis rida hajub lim ¿ ¿1, siis ei saa otsustada n Cauchy { ¿1, siis rida koondub absoluutselt

Kõrgem matemaatika ii
91 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun