Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Matemaatika valemid kl 10-11 12 tõenäosus - sarnased materjalid

graafik, logaritm, tuletis, vektor, trig, lahend, logaritmi, võrrandid, lineaar, telg, eksponent, graafikud, parabool, võrdetegur, muutuja, pöördf, kraad, üldistamine, trigonomeetria, teoreem, radiaan, nide, määramis, ekstreemumid, kumerus, nõgusus, lahendeid, determinant, reaalarvu, murd, radiaanimõõt, trigonomeetrilised, joone võrrand, tehted
thumbnail
12
docx

Matemaatika 11.klass valemid

7) lim  an  bn   lim an  lim bn n  n  n  8) lim  an  bn   lim an  lim bn n  n  n  9) lim  anbn   lim an  lim bn n  n  n  an 10) lim  lim an  lim bn n  bn n  n  11) Korrutise tuletise sõnastus ja valem (u * v ) ´ = Korrutise tuletis võrdub esimese teguri tuletise ja teise teguri korrutisega, millele on liidetud esimene tegur ja teise teguri tuletise korrutis. (u*v)’ = u’*v+u*v’ ' u 12. Jagatise tuletise sõnastus ja valem ()v =¿ Jagatise tuletis võrdub esimese

Matemaatika
18 allalaadimist
thumbnail
19
doc

Matemaatika valemid.

b · Arv, millest b moodustab p% on 100 p a · Arv a on arvust b 100 % b b-a · Arv b on arvust a suurem 100 % a b-a · Arv a on arvust b väiksem 100 % b 2. Võrrandid ja võrratused b · Lineaarvõrrand ­ ax + b = 0 x=- a 2 p p x 2 + px + q = 0 x 1;2 = - ± -q 2 2

Matemaatika
807 allalaadimist
thumbnail
54
doc

Valemid ja mõisted

12 a >0 a <0 x x x 1 x 2 x 1 x 2 Lahendid: x < x1 x > x 2 . Lahendid: x1 < x < x 2 . II. D = 0 , siis x1 = x 2 = x0 . Graafik puudutab x-telge: a >0 a <0 x 0 x x x 0 Lahendid: x < x0 x > x0 Lahendid puuduvad III. D < 0 . Nullkohad puuduvad. Graafik ei lõika x-telge, on terves ulatuses ülal- või

Matemaatika
1099 allalaadimist
thumbnail
6
doc

11. klassi materjal matemaatikas

Funktsiooni vahemikuks f(x) argumendi väärtuste hulka, mille korral funktsioon kahaneb kahanemisvahemikuks. Kahanemispiirkond X Funktsiooni ekstreemumiteks nimetatakse funktsiooni lokaalseid(kohalikke) max. ja min. väärtusi. Mmax(xmax;ymax) - maksimum punkt Mmin(xmin;ymin) ­ miinimum punkt Paaris- ja paaritufunktsioon Funktsiooni nimetatakse paarisfunktsiooniks, kui argumendi märgi muutumisega ei kaasne argumendi märgi muutust. Paaris funktsiooni graafik on sümmeetriline y-telje suhtes. f(-x) = f(x) Funktsiooni nimetatakse paarituksfunktsiooniks, kui argumendi märgi muutusega kaasneb funktsiooni märgi muutus. Sümmeetriline alguspunkti suhtes. f(-x) = -f(x) Et teha kindlaks, kas funktsioon on paaris või paaritu või ei ole kumbki, asendatakse funktsiooni avaldises x -x ja teisendatakse avaldist, kui tulemuseks tekib esialgne funktsioon siis on tegemist paarisfunktsiooniga, kui tulemusele saab miinusmärgi ette võtta ja

Matemaatika
501 allalaadimist
thumbnail
108
doc

MATEMAATIKA TÄIENDÕPE: Valemid

a0 a0 x x x 1 x 2 x 1 x 2 Lahendid: x  x1  x  x 2 . Lahendid: x1  x  x 2 . II. D  0 , siis x1  x 2  x0 . Graafik puudutab x-telge: a0 a0 x 0 x x x 0 Lahendid: x  x0  x  x0 Lahendid puuduvad III. D  0 . Nullkohad puuduvad

Algebra I
60 allalaadimist
thumbnail
3
doc

Matemaatika valemid

x a X - = ]0;1[ lim[ f ( x) g ( x)] = AB x a X + = ]0;1[ f ( x) A X - = ]1; [ lim = x a g ( x) B Tuletis y = f ( x + x) - f ( x) Eksponentfunktsioon y =ax y x =R x y = ]0; [ y lim X 0

Matemaatika
222 allalaadimist
thumbnail
246
pdf

Funktsiooni graafik I õpik

1 10. klass Viljandi Täiskasvanute Gümnaasium KORDAMINE: FUNKTSIOONI GRAAFIK I Joonistel on kuue funktsiooni graafikud. Tee kindlaks, missuguste funktsioonidega on tegemist. 1 2 3 © Allar Veelmaa 2014 2 10. klass Viljandi Täiskasvanute Gümnaasium KORDAMINE: FUNKTSIOONI GRAAFIK II © Allar Veelmaa 2014 3

Matemaatika
79 allalaadimist
thumbnail
40
doc

Keskkooli matemaatika raudvara

........................................................................................12 Relatiivne viga (suhteline viga)..........................................................................................12 Arvu tüvenumbrid...................................................................................................................12 Arvu standardkuju.................................................................................................................. 12 II Võrrandid ja võrratused.......................................................................................................... 12 Võrrandid................................................................................................................................12 Võrrandi samaväärsus.............................................................................................................13 Lineaarvõrrand............................................................................

Matemaatika
1453 allalaadimist
thumbnail
9
doc

INTEGREERIMISE VALEMID

u v ­ v u u = v v2 = v x v2 f ( x) dx = ln f ( x) + c Parameetrilisel kujul antud funktsiooni tuletis, kus x = (t) ja y = (t) yt ( y x ) t y txt ­ y t xt y x = ja y x = y x = xt xt ( xt ) 3 Nr Diferentseerimise valemid Diferentseerimise valemid Integreerimise valemid Lihtfunktsioon Liitfunktsioon 1 (C)'=0 0 dx = c

Matemaatiline analüüs
109 allalaadimist
thumbnail
9
doc

Diferentseerimise ja integreerimise valemid

u v ­ v u u = v v2 = v x v2 f ( x) dx = ln f ( x) + c Parameetrilisel kujul antud funktsiooni tuletis, kus x = (t) ja y = (t) yt ( y x ) t y txt ­ y t xt y x = ja y x = y x = xt xt ( xt ) 3 Nr Diferentseerimise valemid Diferentseerimise valemid Integreerimise valemid Lihtfunktsioon Liitfunktsioon 1 (C)'=0 0 dx = c

Diferentsiaal-ja...
86 allalaadimist
thumbnail
3
doc

Gümnaasiumi valemid

x 0 x x n Funktsioon Y = f (x) on pidev kohal a, kui lim f ( x) = f (a) x a Pidevuse tunnus: lim y = 0 x 0 f ( x + x) - f ( x) Funktsiooni f(x) tuletis kohal x: f ( x) = lim x 0 x Liitfunktsiooni tuletis: F ( x) = f (u ) g ( x) 1 Pöördfunktsiooni tuletis: g ( x) = f [ g ( x)] Funktsioonide summa, vahe, korrutise ja jagatise tuletis: [u ( x) + v( x)] = u ( x) + v ( x) [u ( x) -v( x)] = u ( x) - v ( x)

Matemaatika
833 allalaadimist
thumbnail
4
doc

Gümnaasiumi I astme valemid

21. Astendaja 0 a 0 = 1 , kui a 0 -n 1 22. Negatiivne astendaja a = n a m 23. Murruline astendaja a n = n a m RUUTVÕRRAND 24. Taandatud ruutvõrrand x2 + px+q = 0. 2 p p 25. Võrrandi x2 + px + q = 0 lahend on valem x1; 2 = - ± -q . 2 2 26. Taandamata ruutvõrrand ax 2 + bx + c = 0 , a 1 - b ± b 2 - 4ac 27. Võrrandi ax2 + bx + c = 0 lahend on valem x1; 2 = 2a 28. Viete'i valemid x1 + x 2 = - p ja x1 x2 = q , kus x1 ja x2 on taandatud

Matemaatika
661 allalaadimist
thumbnail
4
doc

Valemid

21. Astendaja 0 a 0 = 1 , kui a 0 -n 1 22. Negatiivne astendaja a = n a m 23. Murruline astendaja a n = n a m RUUTVÕRRAND 24. Taandatud ruutvõrrand x2 + px+q = 0. 2 p p 25. Võrrandi x2 + px + q = 0 lahend on valem x1; 2 = - ± -q . 2 2 26. Taandamata ruutvõrrand ax 2 + bx + c = 0 , a 1 - b ± b 2 - 4ac 27. Võrrandi ax2 + bx + c = 0 lahend on valem x1; 2 = 2a 28. Viete'i valemid x1 + x 2 = - p ja x1 x2 = q , kus x1 ja x2 on taandatud

Matemaatika
15 allalaadimist
thumbnail
9
doc

Matemaatiline analüüs - konspekt I

Näiteks kui f(x)=ex, siis f-1(y)=lny ja iga x korral ln(ex)=x. Pöördfunktsiooni f-1 leidub ainult niisugusel funktsioonil f, mis on kogu oma määramispiirkonnas kas kasvav või kahanev, sest üksnes selline f korraldab üksühese vastavuse oma määramispiirkonna ja muutumispiirkonna vahel. Kui funktsioon f rahuldab nimetatud tingimust vaid oma määramispiirkonna mingil osahulgal, siis saab rääkida üksnes selle funktsiooni vastava lahendi pöördfunktsioonist. Kui funktsiooni f tuletis f' on kohal x nullist erinev, siis pöördfunktsiooni f-1 tuletis kohal y=f(x) saab avaldada kujul ( f -1 )' ( y ) = f '1( x ) = f ' ( f 1-1 ( y ) ) 4. Funkts. Piirväärtus. Ühepoolsed piirväärtused. Funktsiooni piirv. Def: Funktsioonil f on piirväärtus b kohal a kui suvalises piirprotsessis xa, mis rahuldab tingimust x a, funktsiooni väärtus f(x) läheneb arvule b. Funktsiooni piirväärtuse kirjutusviis on: lim(xa) f(x) = b või f(x) b kui xa

Matemaatiline analüüs
598 allalaadimist
thumbnail
3
doc

Matemaatika valemid

sin2 + cos2 = 1 tan = sin /cos 1+tan2 = 1/cos2 sin2 = 1 ­ cos2 sin = tan *cos cos2 = 1/tan2 +1 cos2 = 1 ­ sin2 cos = sin /tan cos2 ­ 1 = - sin2 cot = cos /sin cot =1/tan sin2 ­ 1 = - cos2 cos = cot *sin tan *cot =1 sin = cos /cot 1+cot2 = 1/sin2 sin = cos (90o ­ ) sin = vastas kaatet/hüpotenuus cos = sin (90o ­ ) cos = lähis kaatet/hüpotenuus tan = 1/tan (90o ­ ) tan = vastas kaatet/lähis kaatet cot =tan (90o ­ ) cot = lähis kaatet/vastas kaatet tan = cot (90o ­ ) Kolmnurga pindala Koosinusteoreem Siinusteoreem S=a*h/2 a2=b2+c2-2bc*cos a/sin=b/sin=c/sin=2R S=1/2a*b*

Matemaatika
1750 allalaadimist
thumbnail
156
pdf

Kõrgem matemaatika

. . . . . . . . . . . . . . . . 40 4.5 Tähtsad piirväärtused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.6 Pidevad funktsioonid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.7 Funktsiooni katkevusviise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.8 Pidevate funktsioonide omadused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5 Funktsiooni tuletis ja diferentsiaal 47 5.1 Keskmine kiirus ja hetkkiirus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.2 Tuletise definitsioon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.3 Põhiliste elementaarfunktsioonide tuletised . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.4 Diferentseerimise reeglid . . . . . . . . . . . . . . .

Kõrgem matemaatika
94 allalaadimist
thumbnail
142
pdf

Matemaatilise analüüsi konspekt TTÜ's

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.8 L~opmatult kahanevate ja l~opmatult kasvavate suuruste v~ordlemine. 43 2.9 Funktsiooni pidevus. Katkevuspunktide liigitus. . . . . . . . . . . 45 ¨ 2.10 Uhepoolne pidevus. Pidevus hulkadel. Elementaarfunktsioonide pidevus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.11 L~oigul pidevate funktsioonide omadusi. . . . . . . . . . . . . . . . 52 3 Tuletis ja diferentsiaal 57 3.1 Tuletise, diferentseeruva funktsiooni ja diferentsiaali m~oisted. . . 57 3.2 N¨aiteid tuletiste kohta rakendustes. . . . . . . . . . . . . . . . . . 60 3.3 Tuletiste arvutamise p~ohireeglid . . . . . . . . . . . . . . . . . . . 61 3.4 Ilmutamata funktsiooni, p¨o¨ordfunktsiooni ja parameetrilise funk- tsiooni diferentseerimine. . . . . . . . . . . . . . . . . . . . . . . . 62

Matemaatiline analüüs
47 allalaadimist
thumbnail
142
pdf

Matemaatiline analüüs I

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.8 L~opmatult kahanevate ja l~opmatult kasvavate suuruste v~ordlemine. 43 2.9 Funktsiooni pidevus. Katkevuspunktide liigitus. . . . . . . . . . . 45 ¨ 2.10 Uhepoolne pidevus. Pidevus hulkadel. Elementaarfunktsioonide pidevus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.11 L~oigul pidevate funktsioonide omadusi. . . . . . . . . . . . . . . . 52 3 Tuletis ja diferentsiaal 57 3.1 Tuletise, diferentseeruva funktsiooni ja diferentsiaali m~oisted. . . 57 3.2 N¨aiteid tuletiste kohta rakendustes. . . . . . . . . . . . . . . . . . 60 3.3 Tuletiste arvutamise p~ohireeglid . . . . . . . . . . . . . . . . . . . 61 3.4 Ilmutamata funktsiooni, p¨o¨ordfunktsiooni ja parameetrilise funk- tsiooni diferentseerimine. . . . . . . . . . . . . . . . . . . . . . . . 62

Matemaatika
42 allalaadimist
thumbnail
51
pdf

Matemaatilise analüüsi konspekt

Teoreem 3 Olgu funktsioon y =f(x) pidev lõigul [a, b] Siis mistahes väärtuse jaoks, mis asub funktsiooni vähim ja suurima väärtuse vahel m k M leidub vähemalt üks selline punkt x3 [a, b] , et f(x3)=k Järeldus: Kui funktsioon on pidev lõigul [a, b] ja f(x1)>0 ja f(x2)<0, x1 , x 2 [a, b] . Siis leidub niisugune x3 ]x1 , x 2 [ , et f ( x 3 ) = 0 © 2001 - Ivari Horm ([email protected]), Toomas Sarv 9 Funktsiooni tuletis ja selle geomeetriline tähendus. Puutuja ja normaali võrrand. Olgu antud funktsioon y = f (x) Anname argumendile x muudu x Siis funktsioon saab vastava muudu y = f ( x + x ) - f (x) Definitsioon 1 Funktsiooni y = f ( x) tuletiseks nimetatakse piirväärtust y f ( x + x) - f ( x) y ' = lim = lim x 0 x x 0 x y

Matemaatiline analüüs
11 allalaadimist
thumbnail
51
pdf

Enno Paisu konspekt

Teoreem 3 Olgu funktsioon y =f(x) pidev lõigul [a, b] Siis mistahes väärtuse jaoks, mis asub funktsiooni vähim ja suurima väärtuse vahel m k M leidub vähemalt üks selline punkt x3 [a, b] , et f(x3)=k Järeldus: Kui funktsioon on pidev lõigul [a, b] ja f(x1)>0 ja f(x2)<0, x1 , x 2 [a, b] . Siis leidub niisugune x3 ]x1 , x 2 [ , et f ( x 3 ) = 0 © 2001 - Ivari Horm ([email protected]), Toomas Sarv 9 Funktsiooni tuletis ja selle geomeetriline tähendus. Puutuja ja normaali võrrand. Olgu antud funktsioon y = f (x) Anname argumendile x muudu x Siis funktsioon saab vastava muudu y = f ( x + x ) - f (x) Definitsioon 1 Funktsiooni y = f ( x) tuletiseks nimetatakse piirväärtust y f ( x + x) - f ( x) y ' = lim = lim x 0 x x 0 x y

Matemaatiline analüüs
179 allalaadimist
thumbnail
273
pdf

Lembit Pallase materjalid

11. Funktsiooni pidevuse m~oiste. Tarvilik ja piisav tingimus funktsiooni pidevuseks 12. Elementaarfunktsioonide pidevus 13. L~oigul pidevate funktsioonide omadused 14. Funktsiooni katkevuspunktid 15. Funktsiooni tuletise m~oiste, selle geomeetriline ja mehhaaniline t~olgendus 1 16. Pidevus ja diferentseeruvus 17. M~onede p~ohiliste elementaarfunktsioonide tuletised 18. Diferentseerimisreeglid 19. P¨o¨ordfunktsiooni tuletis 20. Liitfunktsiooni tuletis 21. Logaritmiline diferentseerimine 22. Ilmutamata funktsiooni tuletis 23. Parameetrilisel kujul esitatud funktsiooni tuletis 24. Funktsiooni diferentsiaal 25. K~orgemat j¨arku tuletised 26. Joone puutuja ja normaali v~orrandid 27. Rolle'i teoreem 28. Cauchy teoreem 29. Lagrange'i teoreem 30. L'Hospitali reegel 31. L'Hospitali reegel teistel m¨aa¨ramatuse juhtudel 32. Taylori valem 33

Matemaatiline analüüs
808 allalaadimist
thumbnail
32
doc

Matemaatika I küsimused ja mõisted vastustega

ühepoolsed piirväärtused f ( a+) = lim f(x); x a+ ja f( a- ) = lim f(x); x a - nimetatakse 1. liiki katkevuspunktiks. ( hüppekoht, kõrvaldatav katkevuskoht, ................................................... 3 17. Teist liiki katkevuspunkt - arvu a nimetatakse funktsiooni y = f(x) teist liiki katkevuspunktiks, kui lim f(x); x a - on lõpmatu või ei eksisteeri ............................................ 4 20. Diferentseeruv funktsioon - kui funktsioonil y = f(x) on tuletis punktis x = x0, siis ütleme, et funktsioon on diferentseeruv punktis x0. Kui funktsioon on aga diferentseeruv mingi piirkonna igas punktis, öeldakse, et funktsioon on diferentseeruv selles piirkonnas. ..................................... 4 1. Arvuhulgad: naturaal-, täis-, ratsionaal-, reaal- ja kompleksarvud. Nende omadused. ...............6 2. Reaalarvu absoluutväärtus, absoluutväärtuse omadused. ............................................................6 Absoluutväärtuse omadused..

Matemaatika
118 allalaadimist
thumbnail
11
doc

Matemaatiline analüüs - konspekt II

32. Lokaalse ekstreemumi piisavad tingimused: tingimus I. Olgu x1 funktsiooni f kriitiline punkt. Kui läbides punkti x1 vasakult paremale funktsiooni tuletise märk muutub plussist miinuseks siis on funktsioonil selles punktis lokaalne maksimum. Kui aga läbides punkti x1 vasakult paremale funktsiooni tuletise märk muutub miinusest plussiks siis on funktsioonil selles punktis lokaalne miinimum. Kui funktsioonil eksisteerib teist järku tuletis siis saab lokaalsete ekstreemumite olemasolu kontrollida ka selle abil. Nimelt maksimumpunkti läbides vasakult paremale funktsiooni graafiku puutuja tõus väheneb. See tähendab et funktsiooni tuletis kahaneb. Funktsiooni tuletis kahaneb aga juhul kui teine tuletis on negatiivne. Seevastu miinimupunkti läbides puutuja tõus suureneb, seega tuletis kasvab. Tuletis kasvab aga juhul kui teine tuletis on positiivne. Järelikult kehtib järgmine väide: Lokaalse ekstreemumi piisav tingimus II

Matemaatiline analüüs
350 allalaadimist
thumbnail
43
pdf

Keskkooli lõpueksam (2008)

3 3 funktsiooni suurim väärtus on 27 . III 1)Kasvamisvahemikud ( ; 0) ja (2; ) , kahanemisvahemik (0; 2) ; 2) lõigul 1; 4 funktsiooni suurim väärtus on 14. Näpunäited I, II, III 1) Funktsioon y f ( x) on diferentseeruv. Diferentseeruv funktsioon on kasvav vahemikus, kus f ( x) 0 ja kahanev vahemikus, kus f ( x) 0 . Seega tuleb leida funktsiooni tuletis ning seejärel lahendada võrratused f ( x) 0 ja f ( x) 0 . Kuna on tegemist kuupfunktsiooniga, siis võrratused f ( x) 0 ja f ( x) 0 kujutavad ruutvõrratusi. Ruutvõrratuse lahendamiseks toimime järgmiselt: 1) leiame vastava ruutfunktsiooni nullkohad, st võrrandi f ' ( x) 0 lahendid; 2) arvestades ruutliikme kordaja märki ja leitud nullkohti skitseerime ruutfunktsiooni graafiku (parabooli);

Algebra ja Analüütiline...
778 allalaadimist
thumbnail
22
docx

Matemaatiline analüüs (vähendatud programm)

tabeli teises reas (veerus). On võimalik vaid siis, kui funktsiooni argumendil on n lõplik arv väärtusi. Analüütiline esitusviis. Funktsioon esitatakse valemi kujul. Kui vaja, lisatakse ka määramispiirkonna kirjeldus. Analüütiliselt antud funktsiooni loomulikuks määramispiirkonnaks nim. argumendi kõigi nende väärtuste hulka mille korral funktsiooni avaldis on täielikult määratud.  Funktsiooni graafik. Funktsioon esitatakse graafikuna tasandil ristkoordinaadistikus. Olgu antud funktsioon f, mille argument on x, sõltuv muutuja y ja määramispiirkond X. Kanname tasandile ristuvad x- ja y- teljed. Vaatleme selles teljestikus joont G, mis koosneb kõikvõimalikest punktidest P = (x, f(x)), kusjuures P esimene koordinaat x jookseb läbi kogu määramispiirkonna X.  Graafiku omadused. Suvaline y-teljega paralleelne sirge saab funktsiooni

Matemaatiline analüüs i
17 allalaadimist
thumbnail
37
docx

Matemaatiline analüüs l.

neil vastavad funktsiooni väärtused tabeli teises reas (veerus). On võimalik vaid siis, kui funktsiooni argumendil on lõplik arv väärtusi. 2. Anaüüutiline esitusviis. Funktsioon esitatakse valemi kujul. Kui vaja, lisatakse ka määramispiirkonna kirjeldus. 3.Graafiline esitusviis. Funktsioon esitatakse graafikuna tasandil ristkoordinaadistikus. Funktsiooni f graafiku definitsioon on järgmine: G = {P = (x, f(x)) || x X} . Kui f(x) > 0, siis graafik paikneb ülalpool x-telge. Kui aga f(x) < 0, siis graafik jääb x-teljest allapoole. Kui suvaline y-teljega paralleelne sirge saab funktsiooni graafikut lõigata maksimaalselt ühes punktis, siis funktsioon on ühene. Juhul, kui eksisteerib vähemalt üks y-teljega paralleleelne sirge lõikab funktsiooni graafikut mitmes punktis, vaadeldav funktsioon on mitmene. 3. Paaris- ja paaritud funktsioonid. Perioodilised funktsioonid. Kasvavad ja kahanevad funktsioonid. Astmefunktsioon

Matemaatiline analüüs
484 allalaadimist
thumbnail
10
doc

Analüütilise geomeetria valemid

16. ühikvektorite skalaarkorrutised ii = 1 ji = 0 ki = 0 ij = 0 jj = 1 kj = 0 ik = 0 jk = 0 kk = 1 17. Skalaarkorrutis koordinaatides a b = X1X2 + Y1Y2 + Z1Z2. X 1 X 2 + Y1Y2 + Z 1 Z 2 18. Ühe vektori projektsioon teisel vektoril prb a = X 22 + Y22 + Z 22 19. Vektoria vektorkorrutis vektoriga b on vektor c, mis on määratud järgmiste tingimustega: 1. c = a xb = a b sin , vektori c pikkus võrdub nende vektorite moodulite ja nende vektorite vahelise nurga siinuse korrutisega. 2.Vektori c siht on risti vektoritele a ja b joonestatud rööpküliku tasandiga. ( c a ; c b ) 3.Vektori c suund on selline, et vektorid a, b ja c antud järjekorras moodustaksid parempoolse vektorkolmiku, s.t.

Analüütiline geomeetria
140 allalaadimist
thumbnail
10
doc

Analüütilise geomeetria valemid

16. ühikvektorite skalaarkorrutised ii = 1 ji = 0 ki = 0 ij = 0 jj = 1 kj = 0 ik = 0 jk = 0 kk = 1 17. Skalaarkorrutis koordinaatides a b = X1X2 + Y1Y2 + Z1Z2. X 1 X 2 + Y1Y2 + Z 1 Z 2 18. Ühe vektori projektsioon teisel vektoril prb a = X 22 + Y22 + Z 22 19. Vektoria vektorkorrutis vektoriga b on vektor c, mis on määratud järgmiste tingimustega: 1. c = a xb = a b sin , vektori c pikkus võrdub nende vektorite moodulite ja nende vektorite vahelise nurga siinuse korrutisega. 2.Vektori c siht on risti vektoritele a ja b joonestatud rööpküliku tasandiga. ( c a ; c b ) 3.Vektori c suund on selline, et vektorid a, b ja c antud järjekorras moodustaksid parempoolse vektorkolmiku, s.t.

Analüütiline geomeetria
39 allalaadimist
thumbnail
13
doc

Matemaatiline analüüs 1 kordaisküsimuste vastused

saame määrata ligikaudu 3.Eriomadustega funktsioone 1.ühesed ja mitmesed f-d: *Def. y= f(x), mille MP=X, ühene sel korral, kui igale x väärtusele vastab parajasti üks f-ni y=f(x) väärtus NT:y=x 2 (lineaarliige määrab telje sihi) *Def. y=f(x), MP=X, mitmene kui tekib rohkem kui 1 f-n. leiduvad niisugused x väärtused, mille korral y=f(x) NT: y=± x , y2=x (x telje sihiline) *lõpmata mitmene on y=arcsinx 2.Paaridf-n *Def. Y=f(x) on paarisf-n juhul kui f(-x)=f(x) x MP graafik sum y telje suhtes, Nt y=x 2 =(-x)2 3. Paaritu f- n- sel korral paaritu kui f(-x)= -f(x), x MP, graafik sümm 0-punkti suhtes 4.Perioodiline f-n-parajasti siis, kui leidub niisugune reaalarv t, et tekib võrdsus iga MP punkti puhul. Märkus: kui f-n perioodiline=> t on lõpmata palju=> min t =T ­periood=> näit ting f-nil t>0 4. Liitfunktsioon Funkts, mille argumendiks ei ole sõltumatu muutuja, vaid tema mingi funktsioon, nim liitfunkt-niks sõltumatu muutuja suhtes y=f(u) u=u(x), Märkus:

Kõrgem matemaatika
147 allalaadimist
thumbnail
19
doc

Nimetu

3. Koostada tabel kriitiliste punktide ja nende naaber- punktide iseloomustamiseks: a) y´>0 (funktsioon kasvab); b) y´<0 (funktsioon kahaneb); c) statsionaarsetes punktides: on max; on min. 8 VI. KUMERUSOMADUSED, KÄÄNUPUNKTID 1. Arvutada y´´ . 2. Leida kriitilised punktid: a) y´´ =, b) y´´ = 0. 3. Koostada tabel kriitiliste punktide ja nende naaber- punktide iseloomustamiseks: a) y´´> 0 graafik on nõgus, b) y´´< 0 graafik on kumer, c) üleminekupunktid kumeruselt nõgususele või vastupidi ­ KÄÄNUPUNKTID. VII. GRAAFIKU JOONESTAMINE 1. Telgede valimine. 2. Kanname joonisele leitud punktid. 3. Kanname joonisele leitud asümptoodid. 4. Joonestame läbi punktide asümptootide vahele joone, arvestades tabelites leiduvaid andmeid monotoonsus- ja kumerusomaduste kohta. 9 INTEGREERIMISVÕTTED MÄÄRAMATA INTEGRAALIS 1

177 allalaadimist
thumbnail
64
pdf

Kolokvium 1 materjal

y2 , ning ei leidu argumendi v¨ a¨artust, millele vastab rohkem kui kaks funktsiooni v¨a¨artust. Tavaliselt t~ olgendatakse mitmest funktsiooni u¨heste funktsioonide (mitmese funkt- siooni harude) komplektina. J¨ argnevalt, k~oneldes funktsioonist, eeldame vaikimisi, et tegemist on u¨hese funktsiooniga. N¨ aide 1. Vaatleme funktsiooni y = x2 , kus X = [-1; 1], mille graafik on kujutatud joonisel 0.8 0.6 y 0.4 0.2 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0

Matemaatiline analüüs
65 allalaadimist
thumbnail
23
doc

Matemaatiline analüüs KT1 vastused

Kanname tasandile riistuvad x ja y teljed.Vaatleme selles teljestikus joont G mis koosneb punktidest P=(x;f(x)) kusjuures P esimene kordinaad x jookesb läbi kogu määramispirkonda X .Seda joont nimetataksegi funktsiooni f graafikuks. Graafiku omadused Punkt P teist kordinaadi f(x) võib tõlgendada P ,,kõrgusena" x telje suhtes.Kui f(x)>0 ;siis on graafiku kõrgus positiivne,kui aga f(x) < 0 siis negatiivne. X-y teljestikus antud punkti üldkuju on P=(x,y) , funktsiooni f graafik koosneb aga punktidest P=(x, f(x)) , siis rahuldavad graafiku punktid võrrandit y = f(x) . Suuvaline y-teljega parallelne sirge saab funktsiooni grafikut lõigata maksimalselt ühes punktis. 3. Paaris- ja paaritud funktsioonid- Funktsiooni f nimetatakse paarisfunktsiooniks, kui iga x kuulub X korral kehtib võrdus f(-x) = f(x). Funktsiooni f nimetatakse paarituks funktsiooniks, kui iga x kuulub X korral kehtib võrdus f(-x) = -f(x).

Matemaatiline analüüs I
105 allalaadimist
thumbnail
22
docx

Matemaatika analüüs I konspekt

tavaliselt t, mida nim. parameetriks. Igat funktsiooni, mis on kujul y = f(x), saab esitada parameetri abil. Vastupidi ei pruugi see nii olla. Parameetrilise esituse eeskuju on: Olgu y = x2+2, parameetriline kujul { y=tx=t+2 2 Tsükloid tekib, kui ringjoon, millel on märgitud nn kinnispunkt, veereb mööda sirget. Alguses kinnispunkt asub nullpunktis. Ringjoone veeremisel mööda sirget joonistab kinnispunkt tsükloidi kaari. Tsükloidi parameetrilised võrrandid: Joonis 6. Paaris- ja paaritufunktsioon Olgu funktsioonil f (x) 0-punkti suhtes sümmeetriline määramispiirkond ehk –a < x < a. f(-x) = f(x) – paarisfunktsioon f(-x) = -f(x) – paaritufunktsioon Joonis 7. Nt. (-x)2 = x2, paarisf. (-x)3 = -x3, paarituf. sin(-x) = -sinx, paarituf, cos (-x) = cosx, paarisf, tan (-x) = -tanx, paarituf, arcsin (-x) = -arcsinx, paarituf. arctan(-x) = -arctan, paarituf, arccos(-x) , ei ole paaritu ega paarisf. Perioodiline funktsioon

Matemaatika analüüs i
24 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun